
An Online Project Allocation System
for the University of Portsmouth

by

Javi Ruiz
(Supervised by Dr. Jim Briggs)

2006

ABSTRACT

A new computing system called SUMS (Student and Unit Management System) is
being implemented in the faculty of Technology. PUMS is the Project Unit Management
System which manages the information related to student's project. Project ideas
submission, supervisors, moderators, projects allocations as well as tracking student
progress are some tasks carried out by this system. A new technology is being used in
order to replace the old system by the new one. SUMS has five distinct sub-systems
that need to be fully compatible between them. One of these is the Project Allocation
Sub-system which manage the allocation of student projects.

The main aim of this project is to develop a computing system fully compatible with
SUMS, which allows students to choose projects ideas for their dissertation topic. Also,
the application will help staff members to allocate these projects to students according
to the student’s options and staff's criteria. A wide range of reports will allow staff
members to have some useful information about the project allocation process

1

ACKNOWLEDGEMENTS

To my supervisor and my client Dr. Jim Briggs for his support, patience guidance, and
advice in all the steps of my project development, and without whom I would have not
been able to carry out this project.

I would like to thanks my family for his support during the time I spent in England doing
this project, my friend Josh for his amazing support in the difficult moments, and all my
classmates.

2

Table of Contents

1. Introduction..6

1.1 The need of a new system..6
1.2 SUMS components...6
1.3 Project Allocation Process..7
1.4 Project Aims & Objectives...8
1.5 Organization of this Report..8

2. Java EE 5 Platform...10

2.1 Introduction..10
2.2 Java EE Main Components...10
 2.2.1 Servlets...10
 2.2.2 Java Server Pages..12
 2.2.3 Java Beans..14
2.3 The Model-View-Controller (MVC) Architecture..14
 2.3.1 Implementing MVC in Java Web Applications...15
2.4 Web-based Applications Frameworks...17
2.5 Apache Struts Framework...18
 2.5.1 Implementing MVC in Struts..18
 2.5.2 ActionServlet...19
 2.5.3 ActionMapping...20
 2.5.4 ActionForward...21
 2.5.5 ActionForm..21
 2.5.6 ActionClass...21
 2.5.7 Struts Control Flow..22
2.6 Object Persistent Frameworks..23

2.6.1 Hibernate..24
2.6.2 Hibernate Architecture..24
2.6.3 The persistence Lifecycle...25
2.6.4 HQL(Hibernate query Language)...26

2.7 Summary...26

3. Analysis..27

3.1 Introduction..27
3.2 Project Planning..27
3.3 System Requirements...28
 3.3.1 System Actors...28
 3.3.2 Use Cases Diagrams..29
 3.3.3 Functional Requirements..30
 3.3.4 Requirements Prioritisation...32
3.4 Review of SUMS...32
3.5 Summary...33

4. Design...34

4.1 Introduction..34
4.2 Presentation Layer Design..34
 4.2.1 Web Architecture Map...34
 4.2.2 Web Wireframes..36

3

4.3 Persistence Layer Design...37
 4.3.1 Data Objects..37
 4.3.2 Database Tables...39
4.4 Business Layer Design..43
 4.4.1 Front Controller Pattern...43
 4.4.2 Business Delegate Pattern..44
4.6 Summary...45

5. Implementation..46

5.1 Introduction..46
5.2 Development Tools...46
 5.2.1 Hardware...46
 5.2.2 Software..46
 5.2.2.1 MySQL server 4.1..47
 5.2.2.2 MySQL Command Line Client..47
 5.2.2.3 NetBeans 5.0..47
 5.2.2.4 Macromedia Dreamweaver MX..47
 5.2.2.5 Adobe Photoshop CS...48
 5.2.3 Problems found on development tools...48
5.3 Presentation Layer implementation...48
5.4 Data Layer implementation...50
5.5 Business Layer implementation..52
5.6 Implementing OPAS functions..55
 5.6.1 Creating Project Ideas...55
 5.6.2 Project Ideas Choices...57
5.7 Summary...59

6. Testing & Evaluation...60

6.1 Introduction..60
6.2 Debugging OPAS..60
6.3 Functionality Testing...60
 6.3.1 Project Ideas...60
 6.3.2 External Contacts..62
 6.3.3 Students..63
 6.3.4 Supervisors...64
 6.3.5 Unit Coordinators..66
6.4 Evaluation..66
 6.4.1 Project Ideas...66
 6.4.2 External Contacts..66
 6.4.3 Students..66
 6.4.4 Supervisors...67
6.5 Summary...67

7. Conclusion..68

7.1 Project Planning..68
7.2 Designing and Implementing OPAS..68
7.3 Learning Achievements...69
7.4 Project Results..69

References..71

4

Appendix A- Project Specification..73
Appendix B- User Requirements...79
Appendix C- Gantt Chart..91
Appendix D- Wireframes..93
Appendix E- OPAS Presentation...100

5

Chapter 1 – Introduction

This chapter will discuss:

• The problem background to be solved.
• The aims and objectives of this project.
• The general overview of this report.

1.1 The need of a new system

All the information related to project students in the School of Computing of the
university of Portsmouth is carried out by an application called PUMS (Project Unit
Management System). This application manages the project ideas submission, student
registration as well as tracking student projects and progress. All the post-graduates
and final year undergraduate students have to undertake a project in order to complete
the course. Students must register in PUMS at the beginning of the academic year.
Then, they select a project idea and project coordinators can then allocate these
projects.

Dr Jim Briggs, who is a Principal Lecturer in the School of Computing, developed PUMS
using CGI (Common Gategay Interface) technology and PERL scripting language.
Besides, it also uses Ascii files in order to store the information generated by the
application. No DBMS (Database Management System) is being used for manage this
information. The old technology needs to be updated by an alternative technology. As it
is commonly known, in a CGI technology, a new CGI process is started for each HTTP
request. It means that the code of the program is loaded each time a new HTTP request
is made. Therefore, when a lot of user connections are made, a lot of server resources
are wasted, affecting the application performance. The disadvantages of CGI
technology as well as the no use of a DBMS makes difficult the use of the application in
this environment.

Briggs decided to use J2EE/Java architecture for developing the new web-based
application. Hence, SUMS (Student Unit Management System) was born. In addition,
the use of a web application framework makes this application more robust, more
scalable, more flexible and easier to be maintained. All the benefits of this technology
will be discussed in the following chapter.

1.2 SUMS Components

There are five distinct sub-systems which are part of SUMS. Only the Project Marking
sub-system is in use at this moment. The others are in other stages of the
implementation. The following figure represents the sub-systems related to the SUMS.

6

 Figure 1.1 - Sums Components.

Each sub-system must be developed according to SUMS requirements as they share a
common database. This is a very important requirement as the whole system must be
developed using the technology required. Furthermore, splitting the system into five
different sub-systems improves the system maintenance as every change made in a
sub-system does not affect the performance of the others. Some of these sub-systems
are still being developed by other postgraduate students as a final projects.

1.3 Project Allocation Process

The SUMS sub-system that this project is concerned to is OPAS (On-line Project
Allocation Sub-system), which controls the project allocation process. This report
describes the design and implementation of it. The different stages of this process and
users who interact with it are illustrated in the following figure.

 Figure 1.2 - OPAS process.

The first stage of this process is the Project Ideas Submission (1). Supervisors,
Students, Project Coordinators as well as external contacts can submit their project
ideas. Once the user has logged into the system, a set of options are available in order
to insert, edit, delete and amend the ideas. Every project idea need to be approved by a
staff member as students can only select approved ideas (2). If any project idea is not
approved, it will be withdrawn from the system and students will not be able to select it.

7

SUMS

Registration
Sub-system

Project
Milestone

Sub-system

Project
Submission
Sub-system

Project
Marking

Sub-system

Part ially Developed but not in use

Fully Developed and in use

Being Developed

Project
Allocation

Sub-system

Project
Ideas

Submission

Project
C hoices

Submission

Preferred
Students

Submission

Project
Allocation

Supervisors
Students
Unit Coordinators
Contacts

Students

Supervisors

Unit Coordinators

1

3

4

Project
Ideas

Approval

2

Staff Members

Students are allowed to choose a maximum number of project ideas. This number
depends on the student's course. The list of submitted project choices can be arranged
in order to indicate the ideas preference. The selected idea that is on the top of the list
has more preference than the others and usually it is the most wanted project choice.

In the other hand, supervisors submit their preferred students (3). The list of preferred
students defines the supervisor's most desired students. Every student can be
associated to one of the project ideas submitted by the supervisor. Therefore, unit
coordinators use this information in order to allocate projects to students.

The final stage in the project allocation process is the decision of which project is
allocated to each student (4). This task is carried out by the unit coordinator. The
information provided by the students (project choices) as well as the information
provided by supervisors (preferred students), will help unit coordinators to allocate the
projects to the students. Then, every student receive a notification (usually by email)
about the project that has been assigned.

1.4 Project Aims & Objectives

The main aim of this project is to develop an On-line Project Allocation System (OPAS).
This system must be fully compatible with SUMS as it needs to be integrated properly
with the whole system (Project Specification - Appendix A). Also, OPAS needs to
contain more functionality than the system being used at this moment. Therefore,
looking for a way to improve the system is another aim of this project. The user
requirements have to be sort it out and documented (User Requirements - Appendix B).

This project should accomplish a set of objectives in order to be completed successfully.
The objectives defined can be summarised as follows:

• Gathering client requirements. This information should be retrieved by means of
client interviews and a review of the old system. Project specification and user
requirements need to be documented.

• Familiarising to SUMS architecture.
• Researching the technologies that are being used for developing SUMS.
• Designing the application and producing the required documents such as UML

diagrams, story boards, data dictionary, etc.
• Implementing and testing the application. A testing plan should be defined in

order to carry out the application testing in a more effective way. According to the
testing results, the required system changes must be carried out.

• Producing technical documents such as Javadocs and user guide if appropriate.
• Delivering the application to the client.

1.5 Organisation of this Report

This report is organised in eight main chapters. The following list summarises the
content of every chapter of this report.

• Chapter 2 gives more details about the technologies that are being used in
SUMS development.

8

• Chapter 3 talks in more detail about the problem to be solved and the system
description.

• Chapter 4 describes the design phase of this project. Also, the additional
database tables that need to be implemented as well as the user interfaces are
included.

• Chapter 5 describes the implementation phase of this project. Also, it includes
the main problems encountered while implementing the prototype and how they
were intended to be solved.

• Chapter 6 describes the planing and execution of the application testing.
• Chapter 7 includes the final conclusion about this project. Besides, the author of

this report gives a personal reflection on about how this project was carried out.

9

CHAPTER 2 – Java EE 5 PLATFORM

This chapter will discuss:

• The main features and components of version 5 of the Java Platform, Enterprise
Edition (Java EE) as well as main advantages of using this platform for building
web-based applications.

• The benefits of using application frameworks such as Apache Struts.
• The benefits of using Object/Relational mapping framework such as Hibernate.

2.1Introduction

Java EE (formerly referred as J2EE) is a platform that is used for developing large Web-
based applications. With the new version 5, applications can be easier to be developed
as many new features has been included. The main aim of this platform is to add
convenience, improve performance, and reduce development time [Stearns & Chinnici
(2006)]. Another positive aspect is that this platform is greatly supported by the open
source community. Therefore, a lot of libraries are available, giving more functionality to
the applications. This platform makes use of a wide range of technologies such as Java
Servlets, JSP(Java Server Pages), and Java Beans, which help to develop web-based
applications in a more effective way. Furthermore, the use of XML increases the
capabilities of these applications as it provides an standard language for configuring
and exchanging data between them.

People have built on top of Java. There are a lot of libraries that facilitate the reuse of
code. Also, there are libraries that implement application frameworks. Some examples
of this are Apache Struts and Hibernate which are described with more details in the
following sections.

2.2Java EE Main Components

2.2.1Servlets

Servlets are programs written in Java that run in the server-side of the application. Their
main task is to process the data received from a user or another program and to return
the required information received directly from a database. This is the most common
way to retrieved data although it can also be obtained from several sources such as
Web Services, RMI (Remote Method invocation), another servlet or directly generated
within the servlet. There are several protocols that can be used for communicating with
the Web browser and the application running on the server. The most widely used
protocol for sending information over the Internet is HTTP (Hypertext Transfer Protocol).
HTTP servlets handles the incoming HTTP requests made by clients. Figure 2.1
represents the servlet's role in a Web-page application environment.

10

 Figure 2.1 - The servlet's role. Adapted from Hall & Brown(2004).

These stages can be summarised as follows:

1. The Web user makes an HTTP request that is received by the HTTP server
(Web Server)

2. The HTTP Server redirects the data to the Servlet Container, also referred to as
the servlet engine.

3. The servlet engine decides what servlet to run according to the deployment
descriptor file (web.xml). It checks if the requested path matches the action URI
(Uniform Resource Identifier) defined in this file.

3.1. If the servlet has not been created yet, the servlet's init method is
 invoked.Then, the servlet's service method is invoked and passes an
 instance of ServletRequest and ServletResponse object.
3.2. Depending on the request method for sending the data (Get or Post),
 the doPost or doGet method is called.
3.3. Then, the appropriate methods are called and the data is retrieved from
 the required source.
3.4. If the view is generated in the servlet, the data is displayed usually using
 print statements. Otherwise, the application control is transferred to
 another servlet or JSP page if appropriate.

 4. Servlet engine sends the HTTP response to the HTTP server.
5. HTTP server sends the output to the client's Web browser and the results are

displayed.

As well as the data sent by the user, normally from a Web form, servlets must read the
implicit HTTP request data (HTTP request headers) indirectly sent by the browser. This
kind of data contains information about cookies, host information, type of data returned,
etc. Furthermore, as well as the explicit data sent by the servlets as a result of the user
action, clients must receive HTTP response data (HTTP response headers). This
implicit data determines the type of document being sent, if a password is required and
another useful information for displaying the content of HTML page. An example of a
basic servlet structure is illustrated in the following figure.

11

1
HTTP request

HTTP response

Servlet
Engine

Database

Java
Application

RMI

Web
Service

SOAP

CLIENT SIDE SERVER SIDE

JD
BC

Web
Browser

Web
Server

HTTP request

HTTP response

2

3

45

 Figure 2.2 – Basic Servlet Structure.

2.2.2 Java Server Pages

A Java Server Page (JSP) is like a HTML file. The difference is that a JSP page may
contain Java code embedded (scriptlet). Figure 2.3 illustrates a scriptlet that in used for
retrieving data from a scoped attribute in a JSP page. Almost everything that can be
done in a servlet may be done using JSP pages. However, servlets are not good for
tasks related to presentation. They are widely used for tasks oriented towards
processing as it is difficult to design and maintain html files generated in servlets using
Java code. As Bakharia (2002) explains JSP pages have several advantages. An
object-oriented programming language together with a wide range of APIs can be used,
giving a lot of functionality to them. Furthermore, it simplifies the web development as
the presentation is separated from the business logic. Broadly speaking, separating the
business from the presentation logic provides a better application maintenance, allows
the use of web development tools such as Macromedia Dreamweaver and makes
possible to split up the application work into different development teams.

12

Incoming data Outgoing information

Imported Classes

Type of content Output

Creating a new text-output
Stream

Print statements with the
HTML tags and content of the
Web page

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class servletName extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
 {
 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 out.print("<html>");
 .
 .
 .
 out.print("</html>");

 out.close();
 }
}

Close the stream

Figure 2.3 – Iterating over a data structure using scriptlets.

However, It is possible to build JSP pages without using Java Code and having the
same functionality (Figure 2.4). JSTL (JavaServer Pages Standard Tag Library)
eradicates the use of scriptlets making easier to access the request and response
objects as well as the scoped attributes [Geary, 2003].

 Figure 2.4 – Iterating over a data structure using JSTL.

13

<table width="800" border="0" align="center" cellpadding="0" cellspacing="0">
 <c:forEach items='${sessionScope.bean}' var='person'>
 <tr>
 <td height="75" valign="middle"><c:out value='${person.name}'/></td>
 <td height="75" valign="middle"><c:out value='${person.surname}'/></td>
 <td height="150" valign="middle"><c:out value='${person.address}'/></td>
 <td height="75" valign="middle"><c:out value='${person.city}'/></td>
 <td height="50" valign="middle"><c:out value='${person.phone}'/></td>
 </tr>
 </c:forEach>
</table>

Session scope bean

Variable name used in the
iteration

Action that iterates
over the data structure

Action for displaying the
information

<html>
 <body>
 <table>
 <%

 ArrayList person=new ArrayList();
 person=(ArrayList)session.getAttribute("bean");

 for (Iterator it=person.iterator();it.hasNext();)
 {

 personBean person=(personBean)it.next();

 String name = person.getName();
 String surname = person.getSurname();
 String address = person.getAddress();
 String city = person.getCity();
 String phone = person.getPhone();

 out.print("<tr>\n");
 out.print("<td height='75' valign='middle'>" + name + "</td>\n");
 out.print("<td height='75' valign='middle'>" + surname + "</td>\n");
 out.print("<td height='75' valign='middle'>" + address + "</td>\n");
 out.print("<td height='75' valign='middle'>" + city + "</td>\n");
 out.print("<td height='75' valign='middle'>" + phone + "</td>\n");
 out.print("</tr>\n");

 }

 %>
 </table>
 </body>
</html>

Session scope bean is retrieved

Iterating over the data structure

Data is stored in variables

Data is displayed using print
statements

Furthermore, a set of standard tags are available in JSP pages. These tags have the
same functionality as using scriptlets. It is also important to say that when a JSP page is
requested, the JSP engine translates it into a servlet. After that, the servlet is compiled
and only a new servlet is generated again when the JSP is updated. It conforms the
servlet life cycle.

2.2.3Java Beans

A Java Beans is a Java classe that enables the data encapsulation in the application. A
Java Bean must have a constructor without arguments. Furthermore, no public
attributes must be declared and values in the class must be accessed only using
accessor (getXXX) and mutator (setXXX) methods (Figure 2.5). Therefore, values
declared in a class are only retrieved and changed by these methods so that these
values are protected from external access.

 Figure 2.5 – Basic Java bean structure.

According to Herbert (2002), from a developer's perspective, Java Beans provides
several advantages. The use of auxiliary software can help to configure a Bean.
Properties and methods declared in the Bean can be easily controlled by the application
builder. Hence, Beans can be populated with the required information and stored in a
scoped variable in order to be shared in other servlets or JSP pages. After that, that
information can be displayed in a JSP page using the expression language defined in
the JSTL. An expression languages makes easier to access data stored in a bean.
Figure 2.4 illustrates the use of an expression language to retrieve data from a bean.

2.3The Model-View-Controller (MVC) Architecture

The MVC is a software architecture that separates an application into three distinct
components as illustrated in the following figure.

14

Private class nameClass
{
 protected String name;
 protected String surname;

 public void setName(String name){
 this.name=name;}
 public void setSurname(String surname){
 this.surname=surname;}

 public String getName(){
 return this.name();}
 public String getSurname(){
 return this.surname();}
}

Variables that
represent the data

Mutators (Setter Methods)

Accessors (Getter Methods)

 Figure 2.6 - MVC architecture components [Husted et al (2003)].

The information used by the application is represented by the model. The view renders
the model and represents this information into a suitable way so that user can interact
with it. Finally, the controller responds to the user actions, process the information and
select the appropriate view. The main advantage of implementing this architecture is
that changes made in one component does not affect the others. As a result of this, the
application development and maintenance are carried out in a more effective way. As
Walnes et al. (2004) explains, the use of MVC has several benefits. The team work can
be divided up and every developers group can focus their work in a specific task. The
business logic is easier to understand and the problems can be solved faster.
Developers can choose the best option to design, develop, and testing the user
interfaces without taking into account the business rules. Hence, a web programmer
without knowledge about Java programming can develop the user interfaces effectively.

2.3.1 Implementing MVC in Java Web Applications

MVC architecture works well in web-based applications. In Java EE platform, the model
is typically represented by a collection of Java Beans. The view is represented by a set
of JSP pages and the controller is represented by a set of servlets. The required steps
for implementing a MVC architecture in this platform are illustrated in the following
figure.

 Figure 2.7 – Implementing MVC [adapted from Hall & Brown (2004)].

15

View Controller
St

at
e

Q
ue

ry

Model

C
ha

ng
e

No
tif

ic
at

io
n

State C
hange

User Actions

View Selection

Events
Actions

Define
Beans

Use
Servlet

Populate
Beans

Store
Beans

Select
view

Extract
Data

1 2 3 4 5 6

Firstly, the Beans which represents the results to be displayed are defined (1). A user,
for instance, wants to make a web searching for displaying a list of results. When an
HTTP request is made, the request parameters are retrieved by the servlet which
process this information and retrieve the required data from the database or any other
source (2). After the data is retrieved, the Beans are populated (data is stored in the
bean)(3). The state can be stored in a request, session or servlet-context object(4).

• Request object: the Bean is only accessible in the destination.
• Session object: the Bean is accessible in all servlets and JSP pages for the

current user.
• Servlet-Context object: the Bean is accessible to any servlet or JSP page of the

application for any user.

Then, the appropriate JSP page is selected and the control is transferred to this page
using the redirect or forwarding method (5). When the JSP receives the Bean, extracts
the data from the Bean using JSP tags, JSTL or scriptlets. Figure 2.8 gives a general
vision about this process and the elements involved.

 Figure 2.8 – MVC Model 2 [Vivek et al. 2005].

There are two ways to implement a MVC architecture. Figure 2.8 represents the model
2 where a servlet is used as a controller for processing the information. At the
beginning of web development it was a tendency to embed the HTML pages within the
application logic using CGI (Common Gateway Interface) or servlets. However, using
PHP, JSP, and other scripting languages, developers embedded business logic within
the display [Vivek et al. 2005]. This is referred to the Model 1 architecture illustrated in
Figure 2.9.

16

 Figure 2.9 – MVC Model 1 [Vivek et al. 2005].

In this model, the information is processed within the JSP pages. Therefore, the
controller as well as the view is represented by JSP pages. Although Model 1 is less
complex than Model 2, it has several disadvantages as the readability of the code if
affected and the business methods are more difficult to be understood. Furthermore, the
application maintenance and testing can be much more difficult to be carried out.
Hence, this model is not suitable for large web-based applications.

2.4 Web-based Application Frameworks

A web framework is a software tool that is used for developing web applications. As
Web-based applications become more complex, frameworks play an important role in
order to help developers to design, develop, and integrate the applications in a more
effective way. In consequence, the application maintenance is easier to carry out. Code
libraries as well as programming language are also provided, improving the functionality
of these applications. Furthermore, making easier the software development,
developers can focus their work in meeting the user requirements. Hence, goals can be
achieved on time and the quality of the application can be greatly improved.

According to Husted et al. (2003), web application frameworks make use of common
components that makes easier the design and development of the application (Figure
2.10). The configuration file provides implementation details for configuring the
framework. The central controller (also referred as a Front Controller) provides a
centralised place to manage HTTP requests. The presentation system controls the
user-interfaces.

17

 Figure 2.10 – Frameworks Main Components [Husted et al. (2003)].

Nevertheless, as Whali et al. (2003) explains, frameworks introduce a set of limitations.
They are not flexible. Frameworks architecture can not be easily changed by the
provider as they can broke other existing codes. The compatibility is one of the most
important points to take into account when choosing a framework. Furthermore, the
learning process to manage the framework can be long. As a result, their adoption in a
team can affect the deadlines for releasing the final applications.

There are a wide range of Web frameworks available. Depending on the applications
requirements and the technology being used some frameworks are more appropriate
than others. The most widely used in Java are the open-source frameworks. They
provide high functionality with little cost as they have the support of the open-source
community. This has a lot of benefits as useful documentation can be found on the
Internet, helping developers to understand and use them properly.

2.5 Apache Struts Framework

Struts is one of the most used open source framework for building Java Web
applications based on the MVC(Model 2) architecture. It provides three key
components[Apache Struts (2006)].

• Front Controller: Dispatches requests to an action handler.
• Location Handler: Transfers the control to the appropriate resource.
• Tag-library: Very useful for creating form-based applications.

Struts makes use of servlets, JSPs, and Java classes in order to implement the Model-
View-Controller architecture. In addition, it provides a wide range of utility classes that
help to improve the application functionality.

2.5.1 Implementing MVC in Struts

Struts applications contain several objects that help to implement MVC
architecture(Figure 2.11).

18

_

_

External
Configuration

Files

A Central
Controller

External
Presentation

Systems

 Figure 2.11 – MVC implementation in Struts [Gulzar (2003)].

These objects are the following [Husted et al.(2003)].
• ActionForward class: View selection.
• ActionForm class: It represents the data for the state change.
• ActionMapping class: The state change event.
• ActionServlet class: It is a part of the controller object that receives the user

actions and state changes. It also controls the selection view.
• Action class : It is a part of the controller object that executes the state change or

query interacting with the model and send to the actionServlet the next view to be
selected.

In order to configure the application, Struts provides some configuration files for helping
developers to build the application.

• struts-config.xml file is an XML file that contains the configuration of all the Struts
components.

• applicationResources.properties file contains all the messages and labels of the
application. Hence, this information is much easier to be managed allowing the
application to be internationalized.

Also, in order to manage the information contained in the Java Beans, Struts provide a
JSP tag extensions. These are very useful for managing the information retrieved from
the Java Beans in the presentation layer. Having taken a look at the general aspects of
the Struts framework, the following sections give a more detailed view about the main
Struts components

2.5.2 ActionServlet

The ActionServlet provides a mechanism for handling all client requests. Its main
objective is to coordinate the activities carried out in the application. It works behind the
scenes, building the other Struts components together [Husted et al. (2003)]. There is
only one ActionServlet for each Struts application and normally each application uses
the same ActionServlet. This object is configured in the deployment descriptor file
(Figure 2.12) that maps all the URI with the .do extension to this servlet. All the
incoming requests are mapped to this object using this configuration. After that, the
requests are delegated to the standard RequestProcessor which provides the
appropriate behaviour for each method.

19

 Figure 2.12 – ActionServlet configuration (Web.xml).

2.5.3 ActionMapping

Every action or business operation needs to be defined in the Struts configuration file
(Figure 2.13). A specific URI (Uniform Resource Identifier) is associated with each
Action in the application. The ActionServlet checks if the requested path matches any
Action URI in the Struts configuration file. After it is found, the ActionMapping gives
information about the behaviour of that action and the elements such as ActionForm,
ActionClass that interacts with it. Each Action has its own behaviour and it is configured
for an specific task.

 Figure 2.13 – Action Mapping configuration (struts-config.xml).

20

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

ActionServlet receives any requests
that matches the pattern *.do

Short name associated to the
ActionServlet class

<action-mappings>
 <action
 input="/index.jsp"
 name="logonForm"
 path="/submitLogonForm"
 scope="request"
 type="general.actions.SubmitLogonForm"
 validate="true">
 <forward
 name="success"
 path="/Index.do"
 redirect="true"/>
 </action>
 .
 .
 .

</action-mappings>

Logical name for the form bean
The URI path to select this mapping

Scope type where the form bean is stored

Form to which control is returned when a validate error is found

If the validate method in the form bean is called

Logical name given to this ActionForward

Control is redirected instead of forwarding
URI for this ActionForward

2.5.4 ActionForward

When an Action is carried out, the application control needs to be sent to another place.
The Struts application must know where to go after an action is finished. Furthermore,
any place in the application must be defined by an ActionForward object. This object is
defined in the Struts configuration file (Figure 2.13) and provides the name of the path
(JSP page, another Action, etc) that matches the logical name given to that
ActionForward.

2.5.5 ActionForm

This object is also known as a form Bean. This object is simply a Java Bean with the
getter and setter methods. When a HTML form is submitted and the ActionServlet finds
the Action URI in the Struts configuration file that matches with the requested path, it
checks if there is any formBean associated to that Action. An ActionForm represents the
HTML form data that has been submitted. This object is automatically populated with
the data from the HTML form using the setter methods.

The value of the validate property in the ActionMapping is also checked. If it is set to
true, the ActionSevlet through the request processor calls the validate method in the
ActionForm. If the data is not valid, the control is sent to the path defined in the input
property of the ActionMapping. The ActionForm provides a easy way to handle the data
from a HTML form, to validate this data and to redisplay the form with the submitted
data if appropriate.

2.5.6 Action Class

After the ActionServlet finds the Action URI that matches the requested path, validates
the form data and everything that needs to be checked, it reads the type property in the
ActionMapping. This value contains the name of the Action object that needs to be used
for the requested action. According to Husted et al. (2003), the responsibilities of the
Action objects are the following. Validating preconditions;Calling business methods if
appropriate;Detecting any processing error;Routing control to the appropriate view.

Although all the code related to business logic can be implemented in the Action
objects, this way to establish the rules for processing the data is not the most
appropriate. Helper methods declared in other classes are very useful as they provide a
better way to understand and design the business layer. An example of an Action class
basic structure is illustrated in the following figure.

21

 Figure 2.14 – Basic ActionClass structure.

2.5.7 Struts Control Flow

The sequence of events when a HTTP request is made in the Struts framework is
illustrated in the following figure.

 Figure 2.15 – Struts Control Flow [Adapted from Polgar et al. (2005)].

These events and how the Struts components interact in the system can be
summarised as follows:

1. A HTTP request is made by the client.
2. The request is sent to the ActionServlet.
3. ActionServlet checks if the requested path matches the Action URI (Uniform

Resource Identifier) pattern defined in the Struts configuration file.

22

import org.apache.struts.action.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class ActionClassName extends Action
{
 public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {

FormBeanName formBean=(FormBeanName) form;
.
.
.
.
return mapping.findForward("forwardName");

 }
}

Imported Classes

ActionMapping used to
invoke this action The ActionForm

specified by the
mapping

Casting for
accessing
to the ActionForm
propertiesBusiness Logic

A Forward is selected

4. If the mapping for that path specifies a form Bean (ActionForm), ActionServlet
checks if it is exists and the ActionForm object is populated.

5. If the attribute validate is set to true in the mapping, the validate method in the
ActionForm is called (This method is used in order to validate the data sent by
the user).

6. If the validation is not correct, the control is returned to the path specified in the
input property in the mapping.

7. If the validation is correct, the execute method in the Action class is called.
8. The required information is retrieved and the bean is populated.
9. The bean is stored in the request,session or application scope.
10. Action returns an ActionForward to the ActionServlet.
11.This actionForward can be a JSP page or another action.
12.The JSP extracts the data from the Bean and the information is displayed using

JSTL, JSP standard tags or scriptlets.
 13. A HttpResponse is sent to the client

2.6 Object Persistent Frameworks

Persistent data is vital for the application development as the information generated by
users must be preserved and also be organized in a database. A persistence layer that
is responsible for data storage as well as the data retrieval is a basis in a layered
architecture(Figure 2.16).

 Figure 2.16 – Persistence Layer [Bauer & King (2005)].

RDBMS(Relational Database Management System) is the most common type of
database in use at this moment and everybody is familiarised with them. As applications
becomes more complex, it is necessary to adopt object-oriented techniques in order to
develop these applications in a more efficient way. Developing software quickly and
correctly is a main goal at a time for any organisation. Object-Oriented programming
languages give developers a powerful tool for reusing software components. Therefore,
software-development groups can be more productive using these techniques rather
than using traditional structured programming languages and applications can be easier
to understand and modify. This and the support of the open-source community, makes
Java one of the most widely used object-oriented programming language at this
moment [Deitel & Deitel (2005)].

23

Presentation Layer

Business Layer

Persistence Layer

Database

Utility
and

Helper
classes

Objects need to be stored in the database and later retrieved preserving their properties
and relationships. These objects need to be persistent. The perfect solution is to use an
OODBMS(Object-Oriented Database Management System) as the information is
represented in the form of objects. Although, object databases has a growth period in
2004 due to the release of open-source object databases, these are still uncommon and
difficult to manage [Wikipedia (2006)]. Despite of RDBMS are unable to represent these
objects in the proper way, they are used instead.

Object Persistent frameworks provides a solution for the use of RDBMS and objects.
They contain libraries which provide a ORM (object/relational mapping) mechanism that
transforms data from objects in an Object-Oriented application to the tables in a
relational database and vice versa. According to Jasnowski (n.d), the benefits of using a
Object Persistence Framework are the following:

• Caching of retrieved objects.
• Separation of SQL from application logic.
• Separation of the data layer from application.
• Simplifies access to complex databases structures.

In the other hand, like any application framework, the learning curve can be long
affecting negatively in the application development. Having taken a look into the general
aspects of the persistence frameworks, the next section describes in a more detail a
persistence framework such as Hibernate.

2.6.1 Hibernate

Hibernate is at this moment the most widely used open-source persistence framework
for building Java web applications. It provides a complete technical documentation as
well as a wide range of libraries and utilities such as HQL (Hibernate Query Language)
for object/relational mapping.

2.6.2 Hibernate Architecture

There are several Hibernate interfaces that are used for separate the business logic
from persistence logic as illustrated in the following figure.

 Figure 2.17 – Hibernate Architecture [Hibernate (2006)].

24

The most important Hibernate interfaces are the following:

• The session interface is the primary interface in a Hibernate application. It is
responsible of the persistence management. When an object state is changed,
the session interface provides the required operations for retrieving and storing
the objects. In a Hibernate application session objects must be created and
destroyed all the time. This is why these objects are lightweight in comparison to
other Hibernate objects.

• The sessionFactory interface is responsible for creating new Session instances.
There is a sessionFactory for every database in a Hibernate application.

• The transaction interface is highly associated with the session interface. A
session may carried out multiple queries at the same time. When all of them are
required to be committed or rolled backed is necessary the use of transactions.
This interface provides the required methods for declaring the boundaries of
database transactions.

• The query interface is responsible for performing queries against the database. It
provides a wide range of methods for helping developers to run queries using
native SQL (Standard Query Language) dialect or HQL (Hibernate query
Language).

2.6.3 The Persistence Lifecycle

The object lifecycle of a hibernate application is illustrated in the following figure.

 Figure 2.18 – Hibernate object lifecycle [Bauer & King (2005)].

The three possible states of an Hibernate object are the following:

• Transient : When objects are first instantiated using the new method, they are not
associated to the database yet. These objects are called transient objects. They
act as a normal object without any connection to any database row. Therefore,

25

Transient

Detached

Persistent

save()
saveOrUpdate()

delete()

update()
saveOrUpdate()
lock()

evict()
close()*
clear()*

garbage

garbage

new

get()
load()
find()

iterate()
etc.

* affects all instances in a
session

any change that is made in these objects does not affect the information stored in
the database.

• Persistent : Any new object can be persistent via the execution of the save
method. Persistent objects are associated directly with the persistence manager
(session interface) that communicates directly with the database. Any change in
the state of a persistent object is synchronised with the database. However, this
state is saved in memory until the end of the transaction. When a transaction is
committed all these changes are propagated to the database. Calling the delete
method, the object is removed from the database and becomes a transient
object.

• Detached : After executing a transaction, the persistence instance are still
associated with the persistence manager (session interface). When the close
method is invoked, this association is removed and these objects are not longer
synchronised with the database.

2.6.4 HQL (Hibernate Query Language)

Although, native SQL queries can be executed in a Hibernate application, a powerful
query language called HQL is also available in order to manage the data retrieval. As
well as HQL, there are two more ways to express queries in Hibernate (Figure 2.19).
One is using the Criteria API (Application Program Interface) and other is using SQL
that maps results set to objects automatically. Using these two methods database
queries can be carried out in a more effective way as it was designed for being used in
a object-oriented environment. Therefore, notions such as polymorphism and
inheritance can be applied to these queries. However, HQL is preferred when complex
queries need to be created [Bauer & King(2005)].

 Figure 2.19 – Ways to express queries in Hibernate[Bauer & King(2005)].

2.7 Summary

This chapter has explained the general aspects of Java EE 5 platform and the benefits
of using frameworks for building web-based applications. Furthermore, a deep look into
Apache Struts and Hibernate, has provided a more detailed view about the features of
these frameworks. Having defined the technology that is being used for building SUMS,
the next chapter includes a detailed description of the system.

26

session.createQuery("from Category c where c.name like 'Laptop%'");

session.createCriteria(Category.class)
 .add(Expression.like(“name”,”Laptop%”));

session.createSQLQuery(
“select {c.*} from CATEGORY {c} where NAME like 'Laptop%'”,
“c”,
Category.class);

Using HQL

Using Criteria API

Using direct SQL with automatic mapping

Chapter 3 – Analysis

This chapter will discuss:

• An analysis of the problem to be solved.
• A detailed description of the system including UML diagrams and the

requirements specification.

3.1 Introduction

System analysis is necessary in order to document and establish the system
requirements prior to start coding the application. A well requirement documentation is
necessary in order to understand the system from the client's point of view. Also, UML
(Unified Modeling Language) provides a set of methods for organising the system
design in a more effective way. Therefore, the system developed can be much easier to
be understood. To implement object-oriented systems with high quality, it is important to
use these methods in order to obtain a good product. Lots of benefits can be gained
using Object Oriented Design in Software Development. Reusable modules, managing
complexity, good maintenance, are some examples of these benefits. UML will help
developers to understand how the system works and all the important elements related
to it. These methods have been adopted in order to produce the required
documentation for system design.

3.2 Project Planning

In the first stages of the project, a Gantt chart diagram was created (Appendix C) in
order to plan the project stages with a lot of detail. Deadlines for each phase and sub-
phases were established in the diagram. The waterfall model is most common strategy
for software development (Figure 3.1).

 Figure 3.1 - The waterfall model (Coopeland, 2003).

27

Every development phase should be completed in order to go to the next phase. This
way to divide the project into several stages may be very successful for planning the
application properly. Nevertheless, as Woojong & Barnes (2004) suggest, the
prototyping method for developing web-based applications is more suitable as web-
based applications are continuously being adapted to their environment (Figure 3.2).

 Figure 3.2 - Evolutionary Prototyping Method (Barnes & Woojong, 2004)

The initial stages of the project planning iterates for a better understanding of the user
requirements. The prototype is developed according to the user feedback and only
when the user and the client agree with the prototype, the real application starts being
developed. In some cases, the prototype may be completed and released as the final
product. This is also known as evolutionary prototype. This method has a lot of benefits
as it increases the comprehension about that the client wants, helping to minimize the
misunderstandings about user requirements. Furthermore it provides a more flexible
project planning as several tasks can be carried out at the same time.

3.3System Requirements

In the early stages of the system development, the user requirements were documented
according to the standards specified by the IEEE (Institute of Electrical and Electronics
Engineers, Inc.) [ANSI/IEEE Std 830-1998] that are included in the Appendix B. This
formal specification presents the good practice for specifying the system to be
developed. All the system requirements were gathered from interviews with Dr. Jim
Briggs and reviews of the PUMS(Project Unit Management System). A description of
the Online Project Allocation Process is included in the chapter 1, section 3. It defines
the required steps needed for allocate projects to students.

3.3.1 System Actors

There are four actors who interact with the system .

• Clients : People who are interested in submitting project ideas and are not related
to the university have to register into the system. Then, they will submit, edit,
delete, amend project ideas and change their contact details. They usually
represent companies which need a specific application. The rest of users will
play the same role as the clients.

• Students : Students who are enrolled in a postgraduate or undergraduate final
course in the University need to select a number of projects. This project

28

selection is made from the list of project ideas submitted by all users who interact
with the system.

• Supervisors : They oversee the student's project. They are responsible for
ensuring that students carry out their project development in the proper way.
They will track the student process and will assess the project report.

• Unit Coordinators : After students submit their project choices, Unit Coordinators
have the required information in order to allocate projects to students. They are
responsible for allocating the projects according to the project allocation criteria.

Both, Coordinator and Supervisor are represented by the Staff Member actor. They
share the properties described in the Staff Member actor. Another generalisation that
could be included is illustrated in Figure 3.3. All the system actors can be represented
by an actor called person. Having this actor, most of the functions that are shared by all
the system actors such as project ideas searching and project ideas submission can be
grouped in this actor.

Figure 3.3 – System actors.

3.3.2 Use Cases Diagrams

It is important to know how the system works from the user's point of view. The users
need to be involved in the application design in order to develop the system according
to their requirements. UML's case diagrams provide useful way to document the system
functionality and how the distinct users interact with the system. The following figure

29

Person

Student Client Staff Member

Unit Coordinator Supervisor

illustrates the Use Case Diagram for the project allocation process. The actor person
has not been represented in Figure 3.4 because it would be difficult to include all the
actors in the diagram. The system functions that are shared by all the actors are
supposed to be represented by the person actor.

 Figure 3.4 – Project Allocation Use Case Diagram.

3.3.3 Functional Requirements

After having defined the distinct actors (Figure 3.3) who take part in the project
allocation process and the main functions that the system should provide to them(Figure
3.4), the next list contains a summary of the system requirements explained with a more
detail and categorised by the system actors.

1. Person
• Search project ideas : Every actor should be able to search for any project idea

stored in the system. The searching can be carried out according to a wide range

30

Use Case Diagram
Online Project Allocation System

Student

Client

Supervisor

Unit Coordinator

Staff Member

Search for
 Students

<<include>>

Amend User
Details

<<include>>

<<include>>

Select Preferred
Students

Change Project
Choices

<<include>>

<<include>>

View Project
Choices

<<include>>

Change Project
Idea Status

Search for
 Project Idea

Submit Project
Choice

Create/Amend/Delete
 New

Project Idea

Allocate
Project

Select My
Students

of criteria such as project idea status code, title, client who submitted the idea,
etc.

• Submit project ideas : System users can submit as many project ideas as they
want. Furthermore, the system should provide a mechanism for editing, deleting,
and amending the ideas already submitted.

• View project ideas : Users should be able to view a list of their project ideas. So,
they can manage them in order to make the required changes in their
information.

2. Client
• Create new account : Before using the system, external clients should create a

new account with relevant information such as name, address, mail, username,
password, etc.

• Change user details : After creating a new client account, clients should be able
to amend their personal and security information.

3. Student
• Submit project choices : Students should be able to select a number of project

choices. These choices will be taken into account in order to allocate the projects
to students.

• Amend project choices : After the project choices are submitted, students should
be able to view the project ideas which were selected and rearrange the
preference order. They also should be able to submit another project choices if
necessary. Only the newer list of options will be taken into account when the
project allocation is carried out by the unit coordinator.

4. Staff Member
• View students assigned to staff member: Both, supervisors and unit coordinators

should be able to view a list of their students.
• Search for students : Information about students can be retrieved. The system

should provide a list of students according the searching criteria chosen.
Furthermore, a list of project choices for each students should be provided.

5. Supervisor
• Preferred students selection: Supervisors should be able to submit a list of their

preferred students. Also, these students can be linked to the supervisor's project
ideas.

• Supervisor's project ideas chosen by students : Supervisors should be able to
view a list of students who selected their project ideas.

6. Unit Coordinator
• Change project ideas status : After a project idea is submitted, it needs to be

approved before being available to be selected by any student. Staff members
should be able to change the status in order to approve, withdraw, reject or
project ideas

• Students without project choices : The system should be able to provide a list of
students who did not submit their project choices. A notification mechanism
should be used for sending emails to these students.

• Project allocation decision : After students submit their project choices and
supervisors submit their preferred students, unit coordinators should be able to

31

allocate projects to students. In the event of a project being unable to be
allocated because it was already allocated to other student, the system should
notify this to the unit coordinator.

3.3.4 Requirements Prioritisation

OPAS should include all the functions described in section 3.3.3. Some of them can not
be implemented until others are fully developed. For instance, the function submit
project choices carried out by students can not be implemented until the function submit
project ideas is finished.
In order to provide the system with a minimal functionality is necessary to develop some
basic functions first. The following list provides a list of basic system requirements:

• Project Ideas Submission carried out by all the system actors.
• Project choices carried out by the student actor.
• Preferred student selection carried out by the supervisor actor.
• Project allocation carried out by the unit coordinator actor.

After these functions are completed, the rest of system functions can be developed.

3.4 Review of SUMS

In order to meet the system requirements is necessary to carry out a review of the old
system. In the early stages of the system development, Briggs provided several files
containing the data structure (Java classes) of Sums. The only sub-system that is in use
at the moment is the Project Marking Sub-system that was built using Apache Struts but
without using Hibernate. The use of Apache Struts and Hibernate is a requirement for
the development of SUMS. Therefore, the Project Marking Sub-system need to be
redesigned using Hibernate. This task is carried out by Briggs. The SUMS database
tables are illustrated in Figure 3.5 [Powell (2005)].

32

Figure 3.5 – Sums database tables relationships [Powell(2005)].

OPAS needs to be designed taken into account the existing SUMS data structure so
that it will be integrated into SUMS properly. Therefore, some data objects that are
represent by Java classes and are necessary for the development of OPAS such as
person, student, cohort_coordinators etc., can be taken from SUMS. Additional data
objects are necessary in order to provide the required functionality to OPAS. The data
objects that have been identified are the following:

• Project Choice : the project ideas that are chosen by students.
• Preferred Students: preferred students chosen by supervisors
• Project Ideas: although there is a data object that is used for representing the

contact project ideas, it need to be redesigned in order to provide to every
system user a way to submit project ideas.

• Contacts: SUMS uses a data object called contacts in order to register the
clients. This data object need to be defined as a association of the person data
object.

These data objects required for OPAS will be added to SUMS structure.

3.5 Summary

This chapter has described the actors and how they interact with the system. Having
defined the functions that the system should provide in a detailed way, the next chapter
focuses in the design phase of the application explaining how the different parts of the
system were developed.

33

Chapter 4 – Design

This chapter will discuss:

• Presentation layer design and the methods chosen for improving the application
usability.

• Persistence layer design with the new data objects and database tables that
were created.

• The business layer design and the controller components of the application.

4.1 Introduction

The use of the MVC or layered architecture, makes that the application design is split up
into distinct parts. Each part is independent of the others and any change that is made
in one part does not affect the others. As discussed in chapter 2, the use of frameworks
such Struts and Hibernate has a lot of benefits as the application development can be
organized in a more effective way. The design of each component that is part of the
application is described with a lot of detail in this chapter.

4.2 Presentation Layer Design

The user interface on a web site plays an important role in order to enhance the
relationship between the user and the organization. In this context, usability principles
have become one of the most important criteria to be taken into account when
designing a Web site. Although OPAS is not aimed to be a typical commercial web page
where users purchase items, it was recommended to use some usability principles in
order to making easier to use the application. How the web page is structured plays an
important role. Page layouts techniques, enhance the readability of web applications.
Therefore, Gestalt principles can be used in order to improve the structure coherence of
the web page [Brinck, et al (2002)]. These principles describes techniques that
improves the perceptual organization of the web page. Distributing the information
properly in the page makes easier the interaction between the user and the system.

Navigability is another important factor to be taken into account. Users should know
where they are and how to get to another section easily. Hypertext links are identified
clearly and multi-page for long result are available in order to organize the results
properly. Search interfaces are easily identified, having the results properly displayed in
the page. The OPAS web pages were designed for an screen resolution of 800 x 600.
Furthermore, the use of variable pixel-width for designing elements was avoided as this
can provoke some problems for displaying the data properly.

4.2.1 Web Architecture Map

A web architecture map (Figure 4.1) represents how the navigation paths are designed
so that users can follow them through the site. It also provides a general view about the
distinct sections available for each user in the application and how they are connected.

34

 Figure 4.1 – Web Architecture Map.

35

O
PA

S A
rchitecture M

ap
H

o
m

e
 P

a
g
e

C
lie

n
t A

c
c
o
u
n
t

U
n
it C

o
o
rd

in
a
to

r
A

c
c
o
u
n
t

P
ro

je
c
t

Id
e
a

F
o
rm

C
lie

n
t

F
o
rm

L
is

t o
f

C
lie

n
ts

P
ro

je
c
t

Id
e
a

F
o
rm

S
e
a
rc

h
 fo

r P
ro

je
c
t Id

e
a
s

C
o
n
ta

c
t u

s

S
e
a
rc

h
in

g
 In

te
rfa

c
e

 (K
e
y
w

o
rd

,
P

ro
je

c
t Id

e
a
 s

ta
tu

s
,

L
a
s
t x

 d
a
y
s
/w

e
e
k
s
..)

K
e
y

H
o
m

e
 P

a
g
e

 3
rd L

e
v
e
l

4
th

 L
e
v
e
l

S
ta

t ic

2
n
d L

e
v
e
l

D
y
n
a
m

ic

E
x
te

rn
a
l

L
in

k
s

In
fo

rm
a
tio

n
S

tu
d
e
n
t A

c
c
o
u
n
t

L
is

t o
f

P
ro

je
c
t

Id
e
a
s

P
ro

je
c
t

C
h
o
ic

e
s

F
o
rm

S
u
p
e
rv

is
o
r A

c
c
o
u
n
t

L
o
g
in

 In
te

rfa
c
e

(U
s
e
r,P

a
s
s
w

o
rd

)

N
e
w

 C
lie

n
t

L
is

t o
f

S
tu

d
e
n
ts

S
e
a
rc

h
in

g
 In

te
rfa

c
e

 (N
a
m

e
, h

e
m

is
 n

u
m

b
e
r,

u
n
it, c

o
u
rs

e
)

L
is

t o
f

P
ro

je
c
t c

h
o
ic

e
s

L
is

t o
f

S
tu

d
e
n
ts

w
ith

o
u
t

P
ro

je
c
t

 C
h
o
ic

e
s

C
lie

n
t

F
o
rm

P
re

fe
rre

d
S

tu
d
e
n
ts

F
o
rm

P
ro

je
c
t

Id
e
a

F
o
rm

P
ro

je
c
t

Id
e
a

F
o
rm

P
ro

je
c
t

A
llo

c
a
tio

n
F
o
rm

4.2.2 Web Wireframes

Web wireframes provides a visual guide about the placement of fundamental elements
in the interface design. They gives a reference about the basic structure every web
page. Figure 4.2 illustrates the OPAS home page. All the pages in OPAS should be
designed according to the layout distribution illustrated in this wireframe. The rest of
wireframes have been included in Appendix D.

 Figure 4.2 – OPAS Home Page Wireframe.

36

4.3 Persistence Layer Design

The persistence layer is responsible for saving to and retrieving from the database the
data that is used in the application. Using Hibernate, when the persistence object
methods such as save, update, etc., are executed, the persistence layer will
automatically perform an action in the database. In order to represent the data, Java
classes can be designed first and then be mapped into database tables. Also, database
tables can be created first and then mapped into Java classes. Briggs in the early
stages of the application development provided me several Java classes that represent
the structure of the data that is used in SUMS. Having this, the required data objects for
representing OPAS data structure were created and then mapped to database tables. In
this section the new data objects that were created as well as the database tables are
described.

4.3.1 Data Objects
Data objects that are used in SUMS must be preserved. Therefore, the new required
Java classes are added to this structure so that OPAS will be integrated into SUMS
properly. Having into account the system requirements and the project allocation
process, that have been already defined, the new required classes that are used in
OPAS are illustrated in the Figure 4.3.

37

Figure 4.3 – OPAS Class Diagram.

38

In order to manage contact's project ideas in SUMS, Contacts and Ideas2 classes were
created. Although these data objects were available in SUMS original design, they need
to be revised. Originally, Contacts class was associated to Ideas2 class in a one to
many relationship. No other relationships were defined in ideas2 class. In the new
design, every system actor can submit project ideas. Therefore, contact class was
defined as a association of the super class person and Ideas2 class is associated to
Person class in a one to one relationship.

ProjectChoice and ProjectChoiceOptions classes were created in order to manage the
information related to the student's project choices. PreferredStudents class was
created in order to manage the information about the supervisor's preferred students.
This class is also associated with Student and Ideas2 classes as every student can be
associated with any supervisor's project idea.

The rest of the classes illustrated in the class diagram such as Person, Student,
MarkerCapacity, FinalProject are taken from SUMS data structure. Although no
significant changes must be done in the structure of these classes, the required
references to the new OPAS Java classes must be included.

4.3.2 OPAS Database Tables

SUMS database design is illustrated in Figure 3.5 in chapter 3. After adding the required
data objects that are used in OPAS and mapping them to database tables using
Hibernate, the original database structure is modified. Figure 4.4 illustrates all SUMS
database tables including those related to OPAS and their relationships between them.

 Figure 4.4 – New SUMS database design [Adapted from Powell (2005)].

39

The following figures represent the data dictionary for the revised and new tables.

Table Name CONTACTS
Field Type Description
orgid bigint (autoincrement) Primary Key
personId bigint Foreign Key to PERSON(personId). Identifies

the person.
orgaddr varchar Postal address
orgdoes varchar Outline of what the organizations does.
orgemail varchar Email address
orgname varchar Organization name
orgpostcode varchar Mail postcode
orgtel varchar Telephone number

Figure 4.5 – Contacts table.

Table Name IDEAS2
Field Type Description
projid bigint (autoincrement) Primary Key
personId bigint Foreign Key to PERSON (personID).

Identifies the person
projapproved varchar Project Idea Status
projdate date Submission date
projdeliver text Anticipated Deliverables
projaims text Aims and Objectives
projquest text Academic question to be answered
projstudent varchar Student for whom project has been devised
projtitle varchar Project Title

Figure 4.6 – Ideas2 table.

Table Name PROJECT_CHOICE
Field Type Description
choiceId bigint(autoincrement) Primary Key
studentId bigint Foreign Key to STUDENT(studentId).

Identifies the student.
choiceDate date Project choice submission date

Figure 4.7 – Project_Choice table.

40

Table Name PROJECT_CHOICE_OPTIONS
Field Type Description
pcoId bigint(autoincrement) Primary Key
choiceId bigint Foreign Key to

PROJECT_CHOICE(choiceId). Identifies the
Project Choice.

projId bigint Foreign Key to IDEAS2(projid). Identifies the
project idea related to this choice

preferenceOrder smallint The preference order for that project chosen.
Figure 4.8 – Project_Choice_Options.

Table Name PREFERRED_STUDENTS
Field Type Description
preferredId bigint(autoincrement) Primary Key
studentId bigint Foreign Key to

STUDENT(studentId).Identifies the student
projid bigint Foreign Key to IDEAS2(projid). Identifies the

project idea
markerCapacityId bigint Foreign Key to MARKER_CAPACITY

(markerCapacityId). Identifies the supervisor
Figure 4.9 – Preferred_Students table.

Having defined the data dictionary, next figure illustrates the OPAS Entity-Relationship
diagram in a more detailed way.

41

Figure 4.10 – OPAS Entity-Relationship Diagram.

42

4.4 Business Layer Design

In order to design the business layer of this application, two patters were adopted;the
front controller and the business delegate pattern. This section shows how these
patterns were applied for developing OPAS and what are the benefits of their
implementation.

4.4.1 Front Controller Pattern

As discussed in chapter 2, In Java2 EE platform, MVC model 2 approach uses servlets
in order to process the application requests. Therefore, it avoids the data processing
within the view. Using the Front Controller pattern (Figure 4.11), the requests
processing as well as the view selection are centralized in a controller component.
Having this configuration, some mechanism such as authentication, error management,
delegate business processing, etc., can be controlled in a more effective way as the
amount of code is highly reduce, avoiding the problems of having duplicate code in the
application. Besides, multiples views can be available for a single request. Therefore,
the required view will be selected according to the results obtained from the data
processed. The main benefit of this configuration is that the application maintenance will
be easier to be carried out and the code will be easier to be understood.

Figure 4.11 – Front Controller Pattern [Sun Developer Network(2006-a)].

43

The number of requests handlers are not limited to one. In an application, depending on
the user's action a specific handler will be invoked. As explained in chapter 2, using
Struts, ActionClass objects are used in order to process the requests. In OPAS, a set of
ActionClass objects were defined in order to process the request data sent by the user.
For every user's action an ActionClass object is available for processing the information
and selecting the appropriate view.

However, although the business methods can be entirely implemented in the
ActionClass object, this is not appropriate as the application become difficult to
maintain. As Husted, et al. (2003) explains, the problems including the business
methods within the ActionClass objects are similar to those discovered when using the
MVC Model 1 architecture. The use of the Business Delegate Pattern solves this
problem.

4.4.2 Business Delegate Pattern

The use of the Business Delegate Pattern (Figure 4.12) allows to delegate all the
responsibility of the business logic to another class that contain the methods for
retrieving the data from the required source. ActionClass objects need to contain the
less amount of Java code, including all the business methods within the Business
Delegate classes.

Figure 4.12 – Business Delegate Pattern [Sun Developer Network(2006-b)].

44

When these methods need to be used, a new instance of the Delegate class will be
created. After that, the required method will be invoked and the information will be
retrieved. OPAS makes use of DAO(Data Access Objects) in order to encapsulate the
data access. These objects contain the required methods for accessing to the database,
retrieve the data and return it in the proper way.

4.5 Summary

This chapter has described the system design phase. How the distinct application layers
were designed as well as the methods chosen for that have been explained in a
detailed way. The next chapter focuses on the system implementation, explaining how it
was carried out and the main problems encountered.

45

Chapter 5 – Implementation

This chapter will discuss:

• Development tools that were used.
• How the presentation, data, and business layer implementation were carried out.
• Problems encountered while implementing the application.

5.1 Introduction

The system implementation phase was split into three parts. Firstly, the required user
interfaces were implemented using a HTML editor. Secondly, OPAS data structure
represented by Hibernate beans was defined. Therefore, mapping these objects to
database tables, the database structure was created. Finally, the user functions and the
business logic were implemented. However, some parts of the application had to be
redesigned while implementing others in order to integrate the system properly. This
chapter focuses in those relevant aspects of the system implementation. Problems
found while implementing the system as well as the decisions taken in order to solve
them are also described.

5.2 Development Tools

The hardware and software development tools that were used for developing the
application are covered in this section.

5.2.1 Hardware

The system development did not required the use of specific hardware. Although the
application will be run in servers which are allocated in the university, the application
was developed using a normal laptop. The computer has the following specifications
(Figure 5.1):

Model Compaq Presario V4160 EA

CPU Pentium M Centrino – 1,86 GHz

Memory 1024 MB DDR2

Hard disk 80 GB

Screen Widescreen 15,4''

Graphics Processor Mobile Intel(R) 915GM/GMS Express Chipset Family

5.2.2 Software

The following sections describes the software development tools that were used for
implementing the system.

46

5.2.2.1 MySQL Server 4.1

Oracle Server 10i is the DBMS(Database Management System) that is used in SUMS.
However, using Hibernate, OPAS could be developed using a different DBMS as
Hibernate can be configured easily in order to be adapted to a different environment.
The only parameter that must be changed is the SQL dialect that Hibernates uses to
communicate with the database. MySQL Server is the most popular open source
database. It is very flexible, powerful, and very easy to manage. Furthermore, It is being
used by large enterprises companies as they can save a lot of money having the same
quality and technical support than proprietary databases. [MySQL (2006)].
Although the most recent stable release is MySQL 5.0, the upgrade to this version was
not taken into account as this version provides enough features for being used to
develop OPAS.

5.2.2.2 MySQL Command Line Client

In order to manage MySQL database server, an additional software was required.
MySQL administrator provides a friendly interface that makes very easy to create and
maintain the databases. Another tools such as the command line client uses a MS-DOS
console. This way to manage the database server is much more difficult as users need
to type commands in order to execute actions. This way is more suitable for advanced
users. I have experience using MySQL and this is the way I have always been
managing MySQL server. So, MySQL Command Line Client was the chosen tool to
manage the database server.

5.2.2.3 NetBeans 5.0

There are several Java IDE (Integrated Development Environment) that are used for
developing Java web applications. Jbuilder (Borland), Eclipse(IBM), and
NetBeans(Suns Microsystems) are some examples. NetBeans is an open source Java
IDE that gives support for web frameworks such as Struts. For using hibernate, the
required modules were downloaded using the update center. Although version 5.5 is
available, it is a Beta release and might have some problems while developing the
application as this is not a final version. Therefore, version 5.0 was chosen as it is more
stable.

5.2.2.4 Macromedia Dreamweaver MX

Macromedia Dreamweaver was used in order to design the user interfaces. Web pages
can be designed without using an HTML editor. Using plain text files, experienced web
developers can design the required web pages for a web-based application. NetBeans
provides a list of HTML elements that can be added to the HTML and JSP pages.
However, if the user interface design is very complex, the use of an HTML editor is
more convenient. Without using an HTML editor, the presentation layer design in OPAS
had been much more difficult to be carried out.

47

5.2.2.5 Adobe Photoshop CSS

As it is commonly known, Adobe Photoshop is a software for image-editing. Although
OPAS user interfaces do not contain pictures or graphics, some design elements such
as space-delimiters and borders were created with Photoshop. Space-delimiters help to
keep the original web pages structure when the dynamic content is displayed.

5.2.3 Problems Found on Development Tools

The lack of experience in the use of NetBeans, specially the use of Struts and Hibernate
caused delays at the start of the system development. More time was required in order
to get use to managing these tools. No problems were found in the other tools due to
the experience in using them.

5.3 Presentation Layer Implementation

OPAS has several web pages. Depending on the user logged in, the options available
and the content displayed is different. Wireframes for every user have been included in
Appendix D . They were useful for helping to develop the required user interfaces in a
more effective way.

Using a HTML editor such Macromedia Dreamweaver, the web pages development was
carried out easily. Firstly, using HTML, the layout of every web page was created. Then,
the code was copied to the JSP pages that were edited using NetBeans. The distinct
elements taking part in the layout are imported using the include directive as illustrated
in Figure 5.1.

Figure 5.1- The include Directive.

Therefore, the content of the file is imported rather than the output (jsp:include
Directive). As a result, only one servlet is created. The content is first inserted into the
page and then the page is translated into a servlet. This way to design web pages that
have a lot of elements in common improves maintainability of the user interface.

48

<tr>
 <td height="10" valign="top">
 </td>
</tr>
<tr>
 <td height="89" valign="top"><%@include file="sections/generalOptions.html"%>
 </td>
</tr>
<tr>
 <td height="10" valign="top">
 </td>
</tr>
<tr>
 <td height="77" valign="top"><%@include file="sections/ideasSearch.html"%>
 </td>
</tr>

At the early stages of the web pages implementation, the use of templates were taken
into account. Macromedia Dreamweaver allows the use of templates in order to speed
up the development and make easier the maintenance of web pages. Therefore, pages
that have a common layout structure can be designed using a template. When a change
is made in the template, web pages that were designed using that template are
automatically updated. However, instead of using templates and having several web
pages with the same layout, only one index page (index.jsp) was created for all users.
Depending on the user logged in, the information displayed is different. Using the
include Directive as well as JSTL for testing the user type, the options available for each
user are different. Next figure illustrates which page is inserted according to the search
engine used (a scoped attribute using JSTL is checked).

Figure 5.2 – JSTL Conditional Statements.

Dynamic content can be added to web pages using JSTL tag library. However, Struts
framework provides a Struts tag library which can be used for managing the information
to be displayed in web pages. JSTL should be used instead of Struts tags as it contains
a useful set of tags, many of which overlap with the Struts tags [Husted, et al (2003)].
Therefore, JSTL makes obsolete the use of Struts logic and bean taglibs. Therefore,
JSTL was used instead Struts taglibs. However, JSTL is not a substitute for the Struts
HTML taglib as it does not provide this functionality. Figure 5.3 shows the code for
displaying a list of project ideas when users search for project ideas.

49

<td width="580" rowspan="8" valign="top">

 <c:choose>
 <c:when test='${not empty sessionScope.displayIS}'>
 <c:if test='${sessionScope.displayIS=="ideas"}'>
 <%@include file="sections/displayProjectIdeas.jsp"%>
 </c:if>
 <c:if test='${sessionScope.displayIS=="students"}'>
 <%@include file="sections/displayStudents.jsp"%>
 </c:if>
 </c:when>
 </c:choose>

</td>

Figure 5.3 – Scoped Attributes & JSTL.

5.4 Data Layer Implementation

Most of the data objects that are used in OPAS are available in SUMS. Briggs provided
me several data objects (Java Beans) that represent the current database structure of
SUMS. As commented in chapter 4, Hibernate beans are first created (Figure 5.4) and
then are mapped into database tables, creating the database structure. Each property in
a Hibernate bean represents a field in the database table. Furthermore, foreign keys are
created according to the relationship between Java classes that are defined in every
Hibernate bean. Although columns types in database tables can be defined for each
property, Hibernate creates the appropriate type for the field according to the data type
defined in the Java class if the column type is not defined.

50

Checking if the scoped attribute exists and contains any value

Iterate over the scoped attribute

Link with a parameter. Its value is
the value of the given property

Printing the value of the given property

 <c:if test='${not empty sessionScope.searchIdeasBean}'>
 <c:forEach items='${sessionScope.searchIdeasBean}' var='idea'>
 <tr>
 <td height="10" colspan="7" valign="top"></td>
 </tr>
 <tr>
 <td height="20" colspan="2" valign="top" class="resultsLink">
<html:link action="displayIdeaInfo" paramId="id" paramName="idea" paramProperty="projid">
 <c:out value='${idea.projtitle}'/>
 </html:link>
 </td>
 <td width="5" valign="top"></td>
 <td width="259" valign="top" class="normalText">
 <c:out value='${idea.contacts.orgname}'/>
 </td>
 <td width="70" align="left" valign="top" class="normalText">
 <c:out value='${idea.projapproved}'/>
 </td>
 <td width="63" align="right" valign="top" class="normalText">
 <c.out value='${idea.projdate}'/>
 </td>
 </tr>
 </c:forEach>
 </c:if>

Figure 5.4 – Hibernate Bean (Class Contacts)

SUMS is being developed using Oracle database. However, OPAS was developed and
tested using MySQL server. Some properties defined in SUMS Java classes use the

51

/**
 *
 *
 * @hibernate.class
 * table="CONTACTS"
 *
 */
public class Contacts {

 // <editor-fold defaultstate="collapsed" desc=" PrimaryKey: long
orgid ">

 private long orgid;
/**
 * @hibernate.id
 * generator-class="increment"
 * column="orgid"
 * type="long"
 * @hibernate.column
 * name="orgid"
 * sql-type="bigint"
 * not-null="true"
 */
 public long getOrgid () {
 return orgid;
 }
 public void setOrgid (long orgid) {
 this.orgid = orgid;
 }
 //</editor-fold>
 .
 .
 . The rest of the attributes###########
 .
 .
 // <editor-fold defaultstate="collapsed" desc=" 1-N
 Relation to Collection /*pojo.Ideas2*/ ideas2s ">

 private Set ideas2s;

 /**
 * @hibernate.set
 * role="ideas2s"
 * @hibernate.collection-key
 * column="orgid"
 * @hibernate.collection-one-to-many
 * class="pojo.Ideas2"
 */
 public Set getIdeas2s() {
 return this.ideas2s;
 }

 public void setIdeas2s(Set ideas2s) {
 this.ideas2s = ideas2s;
 }
 // </editor-fold>

Name and type of the Attribute

Defined as Primary Key

Information used in order to
generate the database fields

Getter and Setter methods

A one-to-many relationship with another
object is defined

Information used in order to generate
relations between objects

Setter and Getter methods that make
reference to the object

Clob(Character Large Object) data type. Using MySQL there were problems for
mapping these classes to database tables. Therefore, the use of Clob data type was
avoided. String data type was used instead.

At the beginning, some problems were encountered when trying to map Java classes to
database tables. MySQL 4.1 use MyISAM storage engine by default. It does not support
transactions and relationships between tables could not be defined. InnoDB storage
engine was used instead. Furthermore, utf8 is the default character for every table
created in the database. Using this character there were some problems when mapping
Java classes as the primary keys as well as indexes could not be created properly in
the database. Changing the default character to latin1 in the MySQL configuration file
(my.ini) solved the problem as this configuration supports key lengths longer than 1000
bytes.

As commented in chapter 2 (section 2.5.5), one of the main components of the Struts
framework is the ActionForm object. This object is used in order to represent the HTML
form data that was submitted by users. Therefore, several ActionForm objects were
defined in OPAS in order to deal with this data. This object structure is similar to Java
beans structure as it contains attributes and the setter and getter methods. However,
the problem arises when there are a lot data to manage or the number of parameters
varies. When students make the project selection, a list of projects is displayed. Then,
they select the required projects using checkboxes and finally submit the form. The
number of projects selected may vary. In order to manage this data, an array of strings
had to be created (Figure 5.5) in the ActionForm.

Figure 5.5 – ActionForm example.

5.5Business Layer Implementation

A set of Action classes were created in order to process the information. The main
function of these objects is to prepare the data in order to be displayed in the
presentation layer. Every operation that the application can undertake is defined in the
ActionMapping located in the Struts configuration file. When the user performs an
action, the requested path is checked in order to know if it matches any Action URI in

52

package general.forms;

import org.apache.struts.action.*;

public class ProjectChoicesForm1 extends ActionForm
{
 protected String[] selectedItems={};

 public void setSelectedItems(String[] selectedItems)
 {
 this.selectedItems=selectedItems;
 }
 public String[] getSelectedItems()
 {
 return this.selectedItems;
 }
}

the Struts configuration file. All these objects represent the front controller pattern
(chapter 4, section 4.1). Furthermore, it is not appropriate to include all the required
Java code for processing the information in these objects. The use of helper classes
makes easier the understanding of the business logic as the readability of the code is
greatly improved. These classes represent the business delegate pattern (chapter 4,
section 4.2).

OPAS business layer was developed using the front controller and business delegate
pattern. Figure 5.6 represents the structure of a typical Struts Action showing how the
helper methods are managed. Every Action class in OPAS was created using this
structure.

53

Figure 5.6 – Action class example

Figure 5.7 shows the code for the helper method that is used in the Struts Action object
illustrated above.

54

package general.actions;

import org.apache.struts.action.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import org.hibernate.HibernateException;
import process.*;
import pojo.*;

public class EditIdeaDetails extends Action
{
 public ActionForward execute(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {

 long projid=Long.parseLong(request.getParameter("id"));

 try
 {

 Ideas2DAO ideas2DAO=new Ideas2DAO();

 idea=ideas2DAO.findIdeasByProjid(projid);

 request.setAttribute("ideaBean", idea);

 return mapping.findForward("success");
 }
 catch(HibernateException exception)
 {
 return mapping.findForward("error");
 }
 catch(Exception exception)
 {
 return mapping.findForward("error");
 }
 finally
 {

 }
 }
}

Package containing this Action class

Required Classes

Managing Exceptions

A new instance of the helper class is created

The required method is invoked and the
information is retrieved

A request scoped attribute is created

Class extended from Action class

The value of the parameter/s (if exists) is retrieved

Return success

Figure 5.7 – Helper method.

The Action class and the helper method shown above were used in OPAS in order to
edit project ideas details. When users want to retrieve information about project ideas,
the Action class in Figure 5.6 is invoked. Then, it uses the helper method in order to find
the information related to that project idea. As commented in Chapter 2 (section 6.6),
Hibernate provides three ways to express queries. In OPAS, all the queries were
created using the criteria API.

5.6 Implementing OPAS functions

This section describes some functions that were implemented in OPAS. Although OPAS
contains more functionality, only those that had some problems for being developed are
described.

5.6.1 Creating Project Ideas

Every system user may create new project ideas. Next figure illustrates the user
interface that is used for managing the user's project ideas.

55

public Ideas2 findIdeasByProjid(long projid)
 {

 Session session=process.HibernateUtil.currentSession();

 Ideas2 idea=(Ideas2)session.createCriteria(Ideas2.class)

 .setFetchMode("contacts", FetchMode.JOIN)

 .add(Restrictions.eq("projid",projid))

 .addOrder(Order.desc("projid")).uniqueResult();

 return idea;
 }

A new session instance is obtained

Using a criteria query

An association with another object is specified

Expressing a constraint on the property projid

Ordering query result. The uniqueResult method executes
the query and returns an object as a result

Return the object with the required data

Figure 5.8 – Managing Project Ideas.

Two sections are available. The section at the top is used for editing and deleting
project ideas already submitted. The section at the bottom allows users to submit or
amend project ideas. When users submit the form, the Action class submitIdeaForm is
invoked. Then, the data from the ideaForm class (ActionForm class) and using the
appropriate method from the ideas2ADO class (helper class), inserts the data into the
database. Next Figure shows how the helper methods in ideas2ADO inserts a new
project idea into the database.

56

Figure 5.9 – Making an object persistent.

The Hyperlinks edit and delete that are displayed in Figure 5.8 allows users to edit and
delete project ideas. These Hyperlinks are created using the Struts HTML tag
<html:link> as shown in the next Figure.

Figure 5.10 – Creating Hyperlinks using Struts HTML tags.

When users press delete, the Action class deleteIdea is invoked. Then, the method
deleteIdea in the helper class Ideas2ADO is used in order to delete the idea.

5.6.2 Project Ideas Choices

Students can select project ideas. First, a list of project ideas available is displayed
(Figure 5.11). After submitting the project choices, a new page is displayed (Figure
5.12). This page contains a list of project ideas choices already submitted. Students can
also rearrange their options according to their preference order.

57

public void saveIdeas2(Ideas2 ideas2)
 {

 Session session = process.HibernateUtil.currentSession();

 Transaction tx = session.beginTransaction();

 session.save(ideas2);

 tx.commit();

 }

A new instance of the session object is created from the session factory

Hibernate transaction is initialized

Making the session object persistent

The transaction is executed

 <c:if test='${not empty sessionScope.contactIdeasBean}'>
 <c:forEach items='${sessionScope.contactIdeasBean}' var='ideas'>
 <tr>
 .
 .
 <td align="center" valign="middle" class="normalText">
 <html:link action="/editIdeaDetails" paramId="id" paramName="ideas"
 paramProperty="projid">
 <bean:message key="general.title.edit"/>
 </html:link>
 </td>
 <td align="center" valign="middle" class="normalText">
 <html:link action="/deleteIdea" paramId="id" paramName="ideas"
 paramProperty="projid">
 <bean:message key="general.title.delete"/>
 </html:link>
 </td>
 .
 .
 </tr>
 </c:forEach>
 </c:if>

Logical name of the action

Name of the request parameter Name of the variable of this iteration

The name of the bean property that dinamically is
added to this hyperlink

Iterating over a session scoped attribute

Figure 5.11 – Project Ideas Available.

Figure 5.12 – Rearrange Project Ideas

58

When students rearrange their project choices list, the Action class
RearrangeProjectChoices is invoked. Students only can insert numbers in the textfields.
The maximum number to be inserted does not have to be more than the total of project
ideas. Also, two textfields cannot contain the same information. ActionForm classes
provide a validate method in order to check the input data. However, due to problems
for redisplaying the form, the input data was checked in the Action class. A helper
method was used for this task (Figure 5.13).

Figure 5.13 – Checking project choices form data.

5.7 Summary

This chapter has described how OPAS was implemented. The implementation was split
up into three distinct parts. Therefore, the business, data, and presentation layer
implementation was covered in a detailed way. Furthermore, this chapter has focused in
the main problems found while implementing the system and how they were solved.
Next chapter describes the system testing and the main functions that were
implemented in OPAS.

59

 public static String validateNumbers(String[] preferenceOrder)
 {
 String text="OK";
 for(int i=0;i<preferenceOrder.length;i++)
 {

 int number=Integer.parseInt(preferenceOrder[i]);

 if (number>preferenceOrder.length)
 {
 text="projChoicesForm.errors.maxNumber";
 break;
 }

 int total=0;

for(int z=0;z<preferenceOrder.length;z++)
 {

 if(number==Integer.parseInt(preferenceOrder[z]))
 total+=1;
 }
 if (total>=2)
 {
 text="projChoicesForm.errors.equalNumber";
 break;
 }
 }
 return text;
 }

Checking if there is two equal numbers

Checking if there is a number higher than the maximum allowed

If there is a non valid character an numberFormat exception is
thrown. It is caught in the Action class

Chapter 6 – Testing and Evaluation

This chapter will discuss:

• A testing on the main functions implemented in OPAS.
• Evaluation of the results obtained in the system testing.

6.1 Introduction

System testing is necessary to ensure if user requirements have been met. Also, errors
can be identified and those functions that were badly implemented can be redesigned.
There are a wide range of methods that developers use to undertake software testing.
Those that required knowledge of the internal structure of the system such as White
Box tests are usually carried out by software developers. However, others that not
require knowledge of how the system was developed such as Black Box tests can be
undertaken by both developers and system users. A test planning was used in OPAS to
evaluate the system functionality, checking if the output data was generated properly
according to each user action.

6.2 Debugging OPAS

While developing OPAS, some debugging techniques were adopted in order to ensure
that the data was properly generated. NetBeans 5.0 provides a debugger tool that is
very useful for debugging applications. Breakpoints can be added into the code in order
to discover failures. Also, the values of every variable can be displayed. Therefore,
checking these values, it was possible to find out if the programming methodology used
in OPAS was the appropriate to process the data. This way to test the application code
helped to develop a web application in a more effective way.

6.3 Functionality Testing

This section provide a set of test cases to test if the output data is generated properly
according to user actions. Also, it indicates the level of functionality that was achieved in
OPAS according to the user requirements established in Appendix B.

6.3.1 Project Ideas

60

Project Ideas Form Input Output Result
Create new project
Ideas

All the required
information is provided

A new Project idea is
created OK

One or more textfields
are left empty

An error message is
displayed for every
textfield that was left
empty. The form is
populated with the
information provided
and the project idea is
not created.

OK

Edit project ideas Select my project
ideas in the options
menu

A list of previous
project ideas for that
user is displayed
displaying the project
idea name, status
code and the
submission date

OK

The user selects a
project idea by clicking
in the Hyperlink
provided in the list of
project ideas

The project idea
selected is edited and
all the information is
displayed in the
project idea form

OK

Delete project ideas The user clicks the
delete Hyperlink
provided in the list of
project ideas
submitted by that user

The project idea is
deleted and a new list
of project ideas is
displayed without
containing the project
idea that was deleted

OK

Amend project ideas The user edits a
project idea already
created, change some
of the information, and
submit the new
information

A new project idea is
created. The project
idea information is not
updated. FAIL

Search Project Ideas Input Output Result
The user searches for
project ideas without
using the searching
criteria

A list of project ideas
is displayed. The
name, the person or
organization that
submitted that idea,
and the status code
provided for every
project idea

OK

The user searches for
project ideas using the
searching criteria
(status code)

A list of project ideas
is displayed. OK

The user searches for
project ideas using the

A list of project ideas
is displayed. However,

FAIL

61

searching
interface(project ideas
submitted in the last
xx days)

this list does not
correspond to the
criteria chosen.

The user selects a
project idea by clicking
on the Hyperlink
provided in the list of
project ideas

A detailed information
about that idea and
the person who
submitted it is
displayed.

OK

6.3.2 External Contacts

External Contact
Form Input Output Result

Create new external
contact

All the required
information is provided

A new external contact
is created OK

One ore more text
fields are left empty

An error message is
displayed for every
textfield that was left
empty. The form is
populated with the
information provided
and the new external
contact is not created.

OK

The username was
previously selected by
other external contact

An error message is
displayed and the new
external contact is not
created

OK

The name was
previously selected by
other user

An error message is
displayed and the new
external contact is not
created

OK

The email address is
provided without using
the required format

The information is
submitted and the new
external contact is
created

FAIL

Password information
need to be inserted
twice. Both textfields
contain different
passwords

An error message is
displayed indicating
that the password
have to be the same

OK

Edit external contact
details

The external contact
selects edit my details
in the options menu

All the information
related to that user is
displayed properly

OK

Amend external
contact details

After the external
contact details is
edited, the user
changes some
information and
submits the form

External contact
details are amended
properly OK

62

External Contact
Login Interface Input Output Result

Login into the
system

Name and/or
username are left in
blank

An error message is
displayed indicating
that the textfield is
empty

OK

Name and/or
username are
incorrects

An error message is
displayed indicating
that the information
provided is wrong

OK

6.3.3 Students

Project Choice Form Input Output Result
Select the “project
available” option in the
options menu

A list of projects
available is displayed.
Project idea name,
user or organization
that submitted that
idea, status code, and
submission date are
the information
provided in the list

OK

Submit project
choices

Select projects ideas
using the checkboxes
available in the form
and submit the
information

The information is
submitted and a new
page is displayed
(Project Choice Form
2) containing the list of
options for that project
choice. Also a list of
previous project
choices is displayed

OK

The student does not
select any project idea
and submit the form

The information is
submitted although no
projects have been
selected

FAIL

Project Choice Form 2 Input Output Result
Select the option “your
project choices”
available in the
options menu

A new page is
displayed with the list
of projects choices. OK

Select the option “your
project choices”
available in the
options menu

If one project has
been allocated to that
student that
information is not
displayed in this form

FAIL

Rearrange options Rearrange the options
by indicating the
preference number

The list of options for
that project choice is
rearranged according

OK

63

to the preference
numbers indicated by
students

Insert a non-numerical
character in the
textfield

An error message is
displayed indicating
that the textfield
contains a wrong
format character

OK

Insert two or more
equal numbers

An error message is
displayed indicating
that two or more
numbers are the same

OK

Insert a number higher
than the maximum
number allowed (The
maximum number is
the number of options
in that project choice)

An error message is
displayed indicating
that the maximum
value possible is xx OK

Delete a project
option

Delete an option by
clicking the Hyperlink
“delete” available for
each project idea in
the list

The project idea is
deleted from the list.
The page is
redisplayed and the
new list of options is
displayed without the
deleted project idea

OK

Retrieve project idea
information

Retrieve information
about project ideas by
clicking on the
Hyperlink available in
the list of options

A list of project ideas
is displayed. The
name, the person or
organization that
submitted that idea,
and the status code
provided for every
project idea

OK

Edit project choices Select a project choice
already submitted
from the list of project
choices

The list of options for
that project choice is
displayed OK

6.3.4 Supervisors

Search Students Input Output Result
Search students
without using any
searching criteria

A list of students is
displayed. Also
checkboxes are
available in order to
select preferred
students

OK

Search students
without using any
searching criteria

A list of students is
displayed. Relevant
information about the

FAIL

64

name, course, and
year is not indicated
properly

Search students using
searching criteria
(Course)

The drop-list was not
populated with
information about the
courses available.
Students can not be
searched using this
criteria

FAIL

Retrieve student
information by clicking
in the Hyperlink
(Hemis number)
available for each
student in the list

Information about that
student is displayed.
Hemis number and
project choices are
also included.
However, name,
surname, and the
course are not
displayed

FAIL

Preferred Students
Form Input Output Result

Submit preferred
students

After a list of students
is displayed using the
students searching
interface, supervisors
select their preferred
students by using the
checkboxes available.
Then, the form is
submitted

The students are
added to list of
supervisor's preferred
students. A new page
is displayed (preferred
students form 2)
containing the list of
preferred students.

OK

A student who was
previously added to
the list of preferred
students is selected

The student is
repeated in the list of
preferred students FAIL

Preferred Students
Form2 Input Output Result

Associate preferred
students to
supervisor's project
ideas

After select “my
preferred students” in
the options menu, a
list of preferred
students is displayed.
Supervisors associate
one of their project
ideas to one of their
preferred student

Drop-list are not
populated with
information about
supervisor's project
ideas. Supervisors can
not associate
preferred students to
their project ideas

FAIL

Delete preferred
students

Delete a student from
the list of preferred
students by clicking on
the “delete ” Hyperlink
provided for each
student in the list

The student is deleted
from the list of
preferred students OK

65

6.3.5 Unit Coordinators

A formal evaluation of unit coordinators functions can not be undertaken as these
functions have not been implemented in OPAS.

6.4 Evaluation

This section provides an evaluation of the results obtained in the testing phase.

6.4.1 Project Ideas

Project ideas can be created. No errors were found while testing this function.
Furthermore, the edition and deletion of project ideas were carried out without having
any problems. However, project ideas details can not be updated. This function was not
implemented in OPAS. When deleting a project idea a confirmation message should be
displayed in order to authorise the deletion. Therefore, an accidental deleting would be
avoided.

When users use the searching interface, a list of project ideas is displayed. The status
code for every project idea is displayed using only one character. This way to display
this information is not appropriate as nobody knows what is the meaning of those
characters (A=Approved, P=Pending Approved, etc..). An additional information about
the meaning should be provided in the web page using a key label. A better solution
would be to display the status code for each project idea without using the abbreviate
way.

6.4.2 External Contacts

External contacts can register in OPAS by providing personal and security information.
Although no errors were found while testing this section, a validation mechanism should
be implemented in order to check the data inserted. Therefore, email should be included
using the right format and telephone number should not contain alphabetical characters.
Furthermore, passwords should have provided using a minimal number of characters.

6.4.3 Students

When displaying student project choices ,a list of previous choices is also displayed.
Students can edit that information and rearrange the project ideas indicating a
preference order. However, unit coordinator will only take into account the last list of
projects submitted. Therefore, it has no sense to rearrange a list that is not going to be
taken into account unless the most recent list was deleted. Only the most recent list
should be allowed to be rearranged. Another solution should be to leave the most
recent list and to delete the former list. Although this solution is the most logical, it would
not allow students to know information about former project choices.

66

6.4.4 Supervisors

Supervisors use the student searching interface in order to submit preferred students.
Then, another web page is displayed containing the list of preferred students and the
possibility to associate each student to any of the supervisor's project ideas. Although
this function has not been implemented in OPAS, a future development identified would
be to associate one student with one or more supervisor's project ideas, instead of
selecting only one project idea for each student.

6.5 Summary

This chapter has focused on testing the main functions provided by OPAS. Although not
all the required user functions have been implemented, OPAS provides a good level of
functionality. According to the testing results, a system evaluation was carried out
providing useful recommendations in order to improve the system functionality in the
required areas. Next chapter includes a final conclusion about this project and a
personal reflection on how the work was carried out.

67

Chapter 7 – Conclusion

This chapter will discuss:

• The achievements that were obtained in developing OPAS
• A constructive review about my work and how it was carried out

7.1 Project Planning

Before starting OPAS development, a plan needed to be defined properly in order to
stablish the required stages to develop OPAS. A Gantt chart diagram was designed
using the Waterfall model. This strategy to develop web applications is not very flexible
as every stage needs to be completed before starting the next one. The OPAS
development required a more flexible plan so that several tasks could be carried out
simultaneously. Therefore, an alternative strategy was adopted. The use of evolutionary
prototyping helped to plan the OPAS development in a more effective way as the initial
stages of the project planning iterates for a better understanding of the user
requirements. Using this strategy a prototype is first developed and using user
feedback, the required changes are carried out until the real application is released.
This would help to integrate OPAS in SUMS in a more effective way. However, the main
constraints of doing the project was the deadlines. Several factors such as the
programming learning curve using Struts and Hibernate contributed to delay the starting
of OPAS development. Therefore, the applications could not be finished on time.

7.2 Designing and Implementing OPAS

As discussed in chapter 5, OPAS design was split up into three parts. The presentation
layer design took most of the time as several web pages needed to be developed.
Then, the data and business layer were designed. Several Wireframes were created in
order to implement the presentation layers in a more effective way. Also, use case
diagrams, class diagrams, and entity-relationship diagrams were produced for a better
understanding of the data layer implementation. Being familiar with the SUMS
architecture was a requirement in order to develop OPAS properly. This requirement
was not fully achieved as many methods that SUMS used to process the data as well as
to manage errors were not used in OPAS. Hence, the integration of OPAS in SUMS will
be much more difficult to carry out.

Before starting to implement OPAS, it was necessary to find out more about of the
technology being used. Although my lack of experience using Apache Struts and
Hibernate delayed the start of the application development, contributed to develop the
application much faster as most of the problems found while implementing the
application were already solved before.

Instead of spending most of the time designing and implementing the presentation
layer, it would have been better to have focused the work on trying to design and
implement the front controller and business delegate pattern in a more effective way. It
has more importance the business layer rather than the presentation layer as when
OPAS will be integrated in SUMS the OPAS user interface will be different.

68

While implementing OPAS, the model had to be redesigned. Some unnecessary
classes such as supervisor class were created. SUMS provides a class called
Marker_Capacity that manages the information related to each supervisor. The
redesigned was carried out after most of the functions were developed. Therefore, most
of the actions classes, helper methods and relationship between classes were revised
spending a lot of time doing this task.

The most important function that OPAS must provide is to allow unit coordinators to
allocate projects to students. It is the last step in the project allocating process as
explained in chapter 1. The system implementation was started developing the project
ideas submission system and external contacts functions. Then, student and
supervisors functions were implemented. However, unit coordinator functions were not
implemented. External contacts functions implementation should have been developed
at the final stage of OPAS implementation. Therefore, the process could be completed
as external contacts functions have much less importance than the rest of user
functions. The rest of the user functions were completely implemented. Project ideas
can be submitted. Students can choice their projects, and supervisors can submit their
preferred students. These functions provide OPAS a basic functionality.

OPAS testing was carried out taking into account the user point of view. Functional
requirements were tested using the black box technique in order to know if the system
behaviour was as required according to the user action. The main OPAS functions
implemented were revised by the client. However, a few meetings with the client were
arranged in order to test the application functionality. More user feedbacks could have
avoided misunderstandings about the user requirements and could have improved the
application quality.

7.3 Learning Achievements

This project enhanced the developer's knowledge on the following list of topics:

● Developing web applications using J2EE platform and the MVC Model 2
architecture.

● Using web based application frameworks such as Apache Struts and Hibernate.
● Using of the JSP standard tag library contributed to learn how to design web

application layers without using scriptlets.
● Using debugging tools that NetBeans provides has contributed to get familiar

with this kind of tools and to use them for testing web applications while being
developed.

Broadly speaking, this project has greatly contributed to learn how to apply object
oriented techniques to develop Java web applications using the Model-View-Controller
architecture.

7.4 Project Results

The aim of this project was to develop an online project allocating system fully
compatible with SUMS as it needs to be integrated properly with the rest of sub-
systems. Although the application does not contain all the user requirements
established in Appendix B, it provides a good level of functionality, allowing users to

69

execute a wide range of actions. The main functions implemented in OPAS can be
integrated in SUMS without having a lot of problems as OPAS was developed according
to the required technology. OPAS can greatly contribute to SUMS development.
Furthermore, some parts of OPAS such as the presentation layer can be a reference for
developing the rest of SUMS sub-systems as it was designed and developed using
advance web usability principles improving the interaction between the system and
users.

Although OPAS was developed for the School of Computing, it could be applied to the
rest of departments in the University of Portsmouth in order to manage the project
allocation process for every student in the university. The new system would manage
more information and would handle more user requests. Therefore, more powerful
servers will be needed to run SUMS. However, no many changes would be carried out
in OPAS in order to be adapted to the new environment.

70

REFERENCES

• Apache Struts (2006). Retrieved August 15, 2006, from Apache Software
Fundation Web site: http://struts.apache.org/

• Bakharia, A. (2002). Java Servlet Pages Fast & Easy Development. Prima
Publishing.

• Bauer, C., King, G. (2005). Hibernate in Action. Manning Publications.

• Brinck, T., Gergle, D., Word, S.D. (2002). Designing web sites that work,
Usability for the web. San Francisco: Morgan Kaufmann Publishers.

• Copeland, L. (2003). A Practitioner's Guide to SoftwareTest Design. Artech
House.

• Deitel, H.M., Deitel, P.J. (2005). Java, How to Program, Sixth Edition. Prentice
Hall.

• Geary, D.M. (2003). Core JSTL, Mastering the JSP Standard Tag Library.
Prentice Hall.

• Gulzar, N. (2003). Practical J2EE Application Architecture. McGraw-Hill Osborne.

• Hall, M., Brown, L. (2004). Core Servlets and JavaServer Pages, Volume 1.
Core Technologies, 2nd Edition. Santa Clara: Prentice Hall.

• Herbert, S. (2002). Java2: The Complete Reference, Fifth Edition. McGraw-Hill
Professional.

• Hibernate (2006). Hibernate Reference Documentation Version 3.1.3. Retrieved
August 19, 2006, from Jboss Website: http://www.hibernate.org

• Husted, T. Dumoulin, C., Franciscus, G., Winterfeldt, D. (2003). Struts in Action,
Building Web Applications with the Leading Java framework. Mannning
Publications Co.

• IEEE/ANSI. (1998). IEEE Std 830-1998, Recommended Practice for Software
Requirements Specifications.

• Jasnowski, M. (n.d). Presistence Frameworks. Retrieved August 19, 2006, from
JDJ Internet Magazine Web site: http://java.sys-con.com/read/36150.htm

• MySQL. (2006). Top Ten Reasons to Use MySQL. Retrieved August 27, 2006,
from MySQL Web page: http://www.mysql.com/why-mysql/toptenreasons.html

71

http://struts.apache.org/
http://www.mysql.com/why-mysql/toptenreasons.html
http://java.sys-con.com/read/36150.htm
http://www.hibernate.org/

• Polgar, J., Bram, R.M., Polgar, T. (2005). Building and Managing Enterprise-
Wide Portals. Idea Group Publishing.

• Powell, S.J. (2005). An online Project Marking system for the University of
Portsmouth. School of Computing, University of Portsmouth.

• Stearns, J., Chinnici, R. (2006). Update: An Introduction to the Java EE 5
Platform. Retrieved August 18, 2006, from Sun Developer Network Web site:
http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

• Sun Developer Network (2006-a). Core J2EE patterns – Front Controller.
Retrieved August 25, 2006, from Sun Microsystems Web site:
http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html

• Sun Developer Network (2006-b). Core J2EE patterns – Business Delegate.
Retrieved August 25, 2006, from Sun Microsystems Web site:
http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html

• Vivek, C., Li, S., Jones, R., Eaves, J., Bell, J.T. (2005). Beginning Java Server
Pages. John Wiley & Sons.

• Wahli, U., Norguet, J., Andersen, J., Hargrove, N., Meser, M. (2003).
WebSphere Version 5. Application Development Handbook. IBM Redbooks.

• Walnes, J., Abrahamian, A., Cannon-Brookes, M., Lightbody, P. (2004). Java
Open Source Programming: With Xdoclet, Junit, WebWork, Hibernate. John
Wiley & Sons.

• Wikipedia (2006). Object Database. Retrieved August 19, 2006, from Wikipedia
Web site: http://en.wikipedia.org/wiki/Object_database

• Woojong, S., Barnes S.J. (2004). Web Enginnering: Principles and Techniques.
Idea Group Publishing.

72

http://en.wikipedia.org/wiki/Object_database
http://java.sun.com/blueprints/corej2eepatterns/Patterns/BusinessDelegate.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/FrontController.html
http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/

APPENDIX A

Project Specification

73

Computing and Multimedia
Postgraduate Programme

MSc in Internet Systems Development

Project Specification
Javi Ruiz

74

Project Specification
1 Basic details

Student name: Javi Ruiz

Draft project title: Project Allocation Sub-system

Course and year: Msc Internet Systems Development

Client organisation: University of Portsmouth (Faculty of Technology)

Client contact name: Dr. Jim Briggs

Project supervisor: Dr. Jim Briggs

2 Outline of the project environment
A new computing system called SUMS (Student and Unit Management System – Son of
Pums) is being implemented in the faculty of Technology. PUMS is the Project Unit
Management System which manages the information related to student's project.
Project ideas submission, supervisors, moderators, projects allocations as well as
tracking student progress are some tasks carried out by this system. A new technology
is being used in order to replace the old system by the new one. SUMS has five distinct
sub-systems that need to be fully compatible between them. Some of them have to be
entirely developed . One of these is the Project Allocation Sub-system which manage
the allocation of student projects. Hence, this sub-system need to be designed and
developed in order to be fully compatible with SUMS.

3 The problem to be solved
The computing system (PUMS) which is currently being used in the Faculty of
Technology in order to manage the project allocations to students was developed using
PERL scripting language. Also it uses ASCII files in order to store the information
generated by this system. No DBMS is being used in order to manage this data.

3.1 Aims
The main aim of this project is to develop a computing system fully compatible with
SUMS, which allows students to choose projects ideas for their dissertation topic. Also,
the application will help staff members to allocate these projects to students according
to the student’s options and staff's criteria. A wide range of reports will allow staff
members to have some useful information about the project allocation process.

3.2 Objectives

75

The main objectives of this project can be summarized as follows:

• Establishing client requirements.
• Producing project requirements documents.
• Establish technical background.
• Designing the application and produce the required documents. Architecture

diagrams, UML diagrams, story boards.
• Implementing and testing the application.
• Carrying out the user evaluation.
• Producing technical documents (Java docs, data dictionary).
• Performing integration testing.
• Delivering the web application.

3.3 Constraints
In order to integrate this application into SUMS properly, the project allocation sub-
system will be developed using J2EE technology. Also the use of Apache Struts is
requested to be used in order to develop the application using a MVC architecture.
Hibernate is also required for building the application. The use of both technologies is
compulsory in order to be the Project Allocation Sub-system fully compatible with
SUMS. The application will be developed using MySQL as a DBMS. However, the
system will have to be integrated into SUMS, which uses Oracle Database.

4 Breakdown of tasks
It is necessary to carry out an analysis of the current system (PUMS) in order to
understand its architecture and how it was developed. After that, it is important to
identify those areas that can be improved using the new system. The understanding of
the business logic will help to develop the application in a more effective way. Also, an
analysis of the new system (SUMS) will be necessary in order to adapt the new
application into the new system without any problem.
For those skills not yet acquired such as the use of Apache Struts and Hibernate further
work will be undertaken in order to know how to integrate these technologies all
together using J2EE. The required database tables for the application will be designed
in order to provide an efficient way to organize the data. Also, the design of new user
interfaces would improve the application performance.
The application needs to be developed taking into account that it has to be fully
compatible with SUMS.

76

5 Project deliverables
After finishing the project, a web application will be ready for allocating projects to
students. Some useful documents such as Java docs and data dictionary will be
produced in order to help other developers if any changes need to be done. A user
guide will be also produced with the required instructions for the correct use of the
application.

6 Requirements
The project requirements will be obtained from interviews with Dr. Jim Briggs. Besides,
the understanding of the project allocation process will be very useful in order to
establish the basic conditions to develop the application. After that, these requirements
will be documented according to the standard ANSI/IEEE Std 830-1998, which specifies
the requirements of software to be developed. The preliminary project requirements are
summarised as follows:

6.1 Main features of the application

• Submission of project ideas choices carried out by students.
• Project allocations carried out by staff members.
• Sending email notifications to students and staff members with relevant

information about the project allocation process.
• Providing a wide range of reports to staff members with useful information about

the project allocation process.
• Providing a facility for advising staff members of those students who have not

chosen their project choices before the deadline.
• Establishing different levels of access to the system.

6.2 Assumptions and dependencies
• Password authentication will be necessary in order to access into the system.
• Errors occurred in the application will be logged.
• Any changes made by staff members will be logged in order control the

modifications of the data.

7 Legal, ethical, professional, social issues
No legal, ethical, or social issues will impose any constraint on the project development.
Nevertheless, there is a professional issue that must be taken into account. This
program is indented to be used by the university staff, not to be only a prototype.
Therefore, it is necessary to develop the application according the user requirements
and with the required security components in order to avoid the misuse of the
application. Furthermore, the application will be tested by users. The methods that are
going to be used will not have any legal/ethical/professional/social implication that could
affect the testing process.

77

8 Facilities and resources
An old version of this system is being used in the University. Nowadays, the University
has all the necessary computing equipment to run this application properly. Hence, no
further resources will be necessary.
In order to develop the application, according to the technology being used in SUMS, is
necessary to acquire some software. NetBeans 5.0 will be used for developing the Web
application. Macromedia Dreamweaver will be necessary for designing and building the
user interfaces. Furthermore, MySQL 5.0 will be required for building and managing the
database.

9 Project plan
See Gantt chart that has been attached to the project specification document. This is a
preliminary diagram that can be changed according to the system requirements.

10 Project mode

Registration mode Full Time Part Time

Project mode Full Time Part Time

Planned submission deadline September 2006

11. Signatures
Signature: Date:

Student Javi Ruiz

Client Jim Briggs

Project supervisor Jim Briggs

78

APPENDIX B

User Requirements

79

1. Introduction

1.1 Purpose

The main purpose of this SRS document is to give a detailed overview of the software
product with its main goals and parameters. In this document, user interfaces, hardware
and user requirements as well as assumptions and dependencies of the application are
described. Furthermore, it defines the functionality of the application from a client's point
of view. The client of this software product is Dr. Jim Briggs from the School of
Computing at the University of Portsmouth. All the requirements presented in this
document have been established according to the client's criteria and the logical
thinking of the developer.

1.2 Scope

A new computing system called SUMS is being implemented in the faculty of
Technology. PUMS manages the information related to student's project. Project ideas
submission, supervisors, moderators, projects allocations as well as tracking student
progress are some tasks carried out by this system. A new technology is being used in
order to replace the old system by the new one. SUMS has five distinct sub-systems
that need to be fully compatible between them. Some of them have to be entirely
developed. One of these is OPAS, which manage the allocation of student projects.
Hence, this sub-system need to be designed and developed in order to be fully
compatible with SUMS.

The computing system (PUMS) which is currently being used in the Faculty of
Technology in order to manage the project allocations to students was developed using
PERL scripting language. Also it uses ASCII files in order to store the information
generated by this system. No DBMS is being used in order to manage this data.

The main aim of this project is to develop a computing system fully compatible with
SUMS, which allows students to choose projects ideas for their dissertation topic. Also,
clients should be able to submit these project ideas. The application will help staff
members to allocate these projects to students according to the student’s options and
staff's criteria. A wide range of reports will allow staff members to have some useful
information about the project allocation process.

1.3 Definitions, Acronyms, and Abbreviations

ANSI – American National Standards Institute
ASCII – American Standard Code for Information Interchange
DBMS – Database Management System
HTML - Hypertext Markup Language
HTTP - Hypertext Transfer Protocol
IEEE – the Institute of Electrical and electronic Engineers
JSP - Java Server Pages
OPAS – Online Project Allocation System
PERL – Practical Extraction and Report Language
PUMS – Project Unit Management System

80

SRS – Software Requirements Specification
SUMS – Student Unit Management System

1.4 References

• IEEE/ANSI. (1998). IEEE Std 830-1998, Recommended Practice for Software
Requirements Specifications.

1.5 Overview of the Document

This document has been organized in the following sections:
Section 1 : General overview about the software requirement specification document

 with references and acronyms that are used.
Section 2 : A view of the product according to the client's point of view. How users

 interact with the application
Section 3 : A more detailed view of the product according to the developer's point of

 view by discussing the input and output data as well as technical
 information of the product.

2. Overall Description
2.1 Product Perspective

2.1.1 System Interfaces

As commented before, the software product will be working in conjunction with other
sub-systems integrated to SUMS. The following diagram (figure 1) represents the sub-
systems existing in SUMS.

Figure 1. SUMS Sub-systems

It has five distinct sub-systems, which are being developing by other students.
Registration Sub-System is partially developed and not in use. Project Marking Sub-
System is fully developed and in use. The others are being developed at the moment by
other students. Hence, it is necessary to develop the project allocation sub-system
according to the technology used in SUMS. J2EE/Java using Struts and Hibernate will
be compulsory in order to integrate the project allocation sub-system into SUMS
properly. Furthermore, the DBMS that is used in SUMS is Oracle. Although the
application is going to be developed using MySQL, it will have to be running properly
using Oracle database. So, it is necessary to investigate how to integrate this sub-
system into SUMS in a proper way.

81

2.1.2 User Interfaces

The project allocation sub-system is a web-page application. So, the user interfaces will
be developed following basic usability principles and techniques oriented to facilitate the
navigation among the pages. A good layout design will be used for distributing the
information in a proper way. So, the user will be able to identify the sections easily as
well as the different options available. The user interface will be developed for being
used in screens with a resolution of 1024x 768 pixels. Nevertheless, the user will be
capable of running the application using smaller screen resolution such as 640x480
pixels, without having any problem.

It ill be necessary to implement a good error management system. When an error
occurs, the page will be redirected to an error page, displaying relevant information
about what caused the defective functioning. Besides, when the input data is not
correct, the user will be able to identify easily the wrong data. This will be possible,
displaying error messages next to the form elements.

The system will provide a wide range of reports. Although, these reports will be
available using the web browser, users will have the chance of producing them in .pdf
format. Hence, users will be able to save or send them by email.

2.1.3 Hardware Interfaces

Like all the web-based applications, in order to access to the system, a Internet
connection will be required. The hardware requirements for running web-based
applications are minimal. Modern computers and all those currently being used in the
University of Portsmouth have the required hardware for running a web browser.

The University has powerful servers that are used for managing the application and
providing services to the clients. This system will be hosted in these servers.

2.1.4 Software Interfaces

The only requirement needed for the clients Operating System is the ability to run a web
browser which supports the HTML version 4.0 or higher. The HTML version 3.2 can be
supported but it can have some problems when CSS styles are used.
In order to manage the user requests in the server-side of the application, Apache Web
Server 2.0 will be required. Furthermore, Apache Tomcat 5.5 will be needed for
implementing the servlets and the JSP specifications. Oracle version 10 will be needed
for managing the application data.

2.1.5 Communication Interfaces

HTTP protocol will be used for sending the information between the server and the
client. For those communications that require security, HTTP(s) protocol will be used for
encrypting the data.

82

2.1.6 Memory Constraints

OPAS will not require more memory requirements in order to be run.

2.1.7 Operations

User Authentication will be placed in Apache Tomcat Server. At the moment, the user
authentication in SUMS is carried out using a database. However, plain files are used
for authenticating staff members when accessing to the system. The OPAS does not
have to manage authentications in order to access to the system. User interfaces as
well as authentications methods will not be developed in this part of the system.
Security and backup policies in SUMS are carried out by the Department of Technology
in the University of Portsmouth.

2.1.8 Site Adaptation Requirements

It is not required to do any modification in the servers that are used in the University of
Portsmouth for running the web application.

2.2 Overview of Functional Requirements

The overview of the functional requirements is the following

• Selection of project ideas choices carried out by students.
• Project allocations carried out by staff members.
• Sending email notifications to students and staff members with relevant

information about the project allocation process.
• Allowing supervisors to select preferred students for their projects.
• Providing a wide range of reports to staff members with useful information about

the
project allocation process.

• Providing a facility for advising staff members of those students who have not
chosen their project choices before the deadline.

• Establishing different levels of access to the system.

As discussed with the client in the last meeting, this system will also manage the project
ideas submission. The following list summarize the functional requirements for this task.

• Managing information about the clients such as personal and security
information.

• Creating a new user.
• Authentication system in order to allow clients to access to their account and

submit project ideas.
• Enable clients to submit, delete, and amend project ideas.
• List of project ideas submitted by the client who starts a session.
• Searching for project ideas using a wide range of criteria.
• Staff member can approve the project ideas already submitted.
• After project ideas are approved by staff members, the system will send an email

to the appropriate clients in order to notify them about this.

83

2.3 User characteristics

There are three types of users who will access to the system.

2.3.1 Students

Students at Portsmouth University will be interested in accessing to the system in order
to submit their project choices. These users are undergraduates and postgraduates
students. They are fully to be competent in using web applications. Although it is not
required to have experience in using web based applications students from the Faculty
of Technology are easier to get used to using web applications than those who do not
have a technological background. This system is going to be used for students from the
Faculty of Technology. No special training will be required in order to teach them how to
use the system.

2.3.2 Staff Members

This kind of users are supervisors and unit coordinators who need to access to the
system in order to get information about the project allocation process. They have
experience in using web based applications. A system is being currently used in the
University of Portsmouth. Although the user interfaces and functions can be different in
the new system, no special training will be required.

2.3.3 Clients

Any person who is interested in having a specific computing system for being
implemented in a company will be able to submit project ideas. Usually, this kind of
users does not have any experience in using web based applications. Although, they
will not need special training, user interfaces for submitting project ideas should be
designed friendly in order to facilitate the understanding of the application as much as
possible.

2.4 Constraints

In order to integrate this application into SUMS properly, the project allocation sub-
system will be developed using J2EE technology. Also the use of Apache Struts is
requested to be used in order to develop the application using a MVC architecture.
Hibernate is also required for building the application. The use of both technologies is
compulsory in order to be the Project Allocation Sub-system fully compatible with SUMS
as commented in the system interfaces section.

The system will be finished in September 2006 as it is part of the Master's final project
of the student who is developing this system.

2.5 Assumptions and Dependencies

There are some dependencies and assumptions that have to be taken into account in
order to develop the system properly. Usernames and passwords will be necessary for
accessing to the system. All the users will be authenticated as valid users if they want
to use the services provided by this system. Furthermore, the errors occurred in the

84

system will be logged as this help to discover and debug them in a more effective way.
The modifications of the data made by staff members will be also logged in order to
track all the changes made in the system.

2.6 Apportioning of Requirements

The application design need to be understand by other developers in order to be
integrated to SUMS properly.

3 Specific Requirements

This section describes the system functional requirements with a high level of detail.
The system requirements are split according to the group users existing in the system
as described in the user characteristics section.

3.1 Students
3.1.1 Searching for Project Ideas (Also for staff members and clients)

Purpose In order to select project ideas, student should be able to search for project
ideas based on several parameters.

Inputs

The project ideas searching can be carried out according the following criteria;
Project Idea title, Organisation Name, Objectives, Contact Name, date of
submission, Project Idea Status. Retrieval of information about the project
ideas is based on the project idea's ID. Only one textfield will be required to
insert the keyword.

Processing The information based in the criteria chosen is retrieved from the database

Outputs A list of project ideas showing the title, organisation name, status, and
submission data should be displayed

3.1.1 Submitting Project Choices

Purpose Students should be able to submit their project choices from a list of Project
Ideas.

Inputs

Undergraduate Students should be able to submit a maximum of seven
project choices. Postgraduate students should be able to submit a maximum
of three project choices (This number can be changed by the administrator at
any time). After students search for project ideas, the project choices
submission can be carried out. Only approved project ideas should be allowed
to be chosen. The use of check boxes will facilitate this task to the students

Processing

After the student submit their choices, the system should check if the number
of options are correct. When the user complete the project submission
properly, the system should record the data into the database. An email will be
sent to the student in order to confirm the choices selection.

Outputs

If the options are not correct, a message indicating the problem should be
displayed. After the student submit the choices properly, a message
confirming the choices should be displayed. Furthermore, a list of the project
ideas submitted should be displayed as well.

85

3.1.1 Amending Project Choices (Also for unit coordinator)

Purpose Students should be able to amend the project choices already selected.

Inputs

If no project has been allocated to the student yet, students could amend their
project choices . A list of the projects already chosen should be displayed in
the screen. After this, the user should be able to select any project idea and
amend it using checkboxes.

Processing The system should check if the project idea chosen has been allocated to
another student. This information should be retrieved from the database.

Outputs
If the process is correct, a message should be displayed confirming the data
updating. Furthermore, a list of project choices with the information amended
should be displayed as well.

In addition to this requirements, students should be able to has the same functionality
as the clients. Hence, they should be able to submit project ideas as well as amend or
delete them.

3.2 Supervisors

3.2.1 Searching for Students (Also Unit Coordinator)

Purpose In order to select preferred students and view students' project choices,
supervisors should be able to search for students.

Inputs
The student searching is carried out according the name, hemis number, unit
or course. Also, the searching should be carried out according to the project
choices as well as the project allocated.

Processing The information is retrieved from the database.
Outputs A list of students showing their name and their course name is displayed.

3.2.2 Viewing all Students

Purpose Supervisors should be able to see a list of all students associated with them.
Inputs Retrieval of the information is carried out by selecting a link on the menu. The

supervisor's ID is used for retrieving this information.
Processing The information is retrieving from the database by using the supervisor's ID

Outputs A list of students with relevant information about them is displayed

3.2.3 Viewing those students who have been chosen the supervisor's project idea

Purpose Supervisors should be able to see a list of students who selected their project
ideas for the project choices

Inputs Retrieval of the information is carried out by selecting a link on the menu. The
supervisor's ID is used for retrieving this information.

Processing The information is retrieving from the database by using the supervisor's ID
Outputs A list of students is displayed. Furthermore, supervisors can add any of these

students to their list of preferred students.

86

3.2.4 Selecting Preferred Students

Purpose Supervisors should be able to select their preferred students for their projects.

Inputs
After a list of students is displayed according to the criteria chosen, a student
can be selected and added to one or more of the supervisor projects. A
maximum of three students should be allowed to be selected.

Processing After the student selection is done, the system record the data into the
database.

Outputs A list of the projects with the preferred students is displayed.

3.2.5 Viewing preferred students

Purpose After selecting the preferred students, supervisors should be able to see a list
of their preferred students. Besides, they should be able to amend this list by
adding more students or deleting them.

Inputs Retrieval of the information is carried out by selecting a link on the menu. The
supervisor's ID is used for retrieving this information.

Processing The information is retrieving from the database by using the supervisor's ID
Outputs A list of preferred students is displayed. Furthermore, a button is available for

each student in order to delete it from the list

3.2.6 Viewing Project Choices

Purpose Supervisors should be able to see the students' project choices.

Inputs
Supervisors can search for any student according to the criteria used in
search for students function. Retrieval of information about the project choices
is based on the students' ID.

Processing The system will retrieve this information from the database.

Outputs A list of students with their project options is displayed. Also, the user has the
chance of creating a .pdf document with this information.

Besides these requirements, supervisors should be able to play the same role as the
clients. Hence, they will be able to submit project ideas as well as amend and delete
them when appropriate.

3.3 Unit Coordinator

The unit coordinator is responsible of allocation projects to Students. He has also the
chance to view the project ideas already chosen by the students.

87

3.3.1 Allocating Projects to Students

Purpose Unit coordinators should be able to allocate project to students according to
the project choices carried out by the students.

Inputs

The projects are allocated to students, using the project ID. The project can be
chosen between the list of project choices provided by each student. Radio
buttons is used for making easier the student project allocation. Furthermore,
the supervisor should be able to allocate a project not selected from the list
provided by the student. A textbox is used for typing the code and name of the
project.

Processing The project is recorded into the database using the project ID.

Outputs A message confirming that the project allocation has been carried out properly
is displayed.

3.3.2 Viewing Students without Project Choices

Purpose Unit coordinators should be able to know the students who have not submitted
the project choices yet.

Inputs A html link is available in order to display a list of those students without
project selection.

Processing This information is retrieved from the database

Outputs A list of students is available in .pdf format as well as in a table in the web
page.

3.3.3 Viewing Project Choices according to student preferences

Purpose Unit coordinators should be able to view those projects ideas which have been
selected by too many users.

Inputs A html link is available in order to display the list of project ideas.
Processing This information is retrieved from the database.

Outputs

A list of project ideas with the student names who have been chosen them is
displayed. This list is ordered by the number of students who have chosen the
project idea. Furthermore, this list will be available in .pdf format as well as in
a web page.

3.3.4 Changing Project Idea Status

Purpose After the project ideas are submitted by the clients, staff members should be
able to change the project idea status in order to approve, allocate, amend, or
withdraw the project idea.

Inputs Staff member can search for any project idea. Using a drop-list, the project
idea status can be changed according to the criteria of the staff member. A
project idea can not be withdrawn if it was already allocated to any student.

Processing After the project idea status is selected and the user press submit, the system
record the data into the database.

Outputs A message conforming the change is displayed.

88

3.4 Clients
3.4.1 Creating a New User

Purpose Clients should be able to access to the system creating a new user if it is the
first time the client accesses to the system.

Inputs The client must provide the following information in order to create an account;
name, address, postcode, contact name, outline of what the organisation
does, telephone, email address, username, and password (re-enter password
as well).

Processing The system checks if the required information has been provided. Besides,
the information provided is also checked in order to know if it matches with
the required format. Finally, the system checks the name and username in
order to know if this information match with other information provided by other
user.

Outputs After submitting the user details properly, the system displays a message
confirming the creation of a new user.

3.4.2 Amending Personal Information

Purpose Clients can amend their personal details as well as the security information
required to access to the system (username and password).

Inputs Clients must type the new information where appropriate.
Processing The information is checked in the same way as creating a new user.

Outputs After submitting the new information, a message confirming the data updating
is displayed.

3.4.3 Submitting Project Ideas

Purpose Clients should be able to submit their project ideas.
Inputs The clients must provide the following information; title, aims and objectives,

academic question to be answered, anticipated deliverables.
Processing The system checks if the user provides the required information with the

correct format.
Outputs After submitting the project idea, a message confirming the project idea

submission is displayed.

3.4.4 Amending Project Ideas

Purpose After the project idea is submitted, the client should be able to update any
information related to the project idea chosen.

Inputs The user can search their project ideas. A list of project ideas is displayed.
After the required project idea is edited, the user can change any information
related to that project idea. The project idea details can not be changed if that
project has been allocated to any student.

Processing The information provided is checked in order to know if it has been submitted
properly.

89

Purpose After the project idea is submitted, the client should be able to update any
information related to the project idea chosen.

Outputs A message confirming the data updating is displayed.

3.4.5 Logging to the System (Also all members)

Purpose In order to submit project ideas, users should log to the system.
Inputs Username and password are required using two textfields in the main page of

the application.
Processing After the user press submit the information, the system checks if the

username and password match with any user already registered to the
system.

Outputs If the username or password is incorrect, a message informing the user of this
is displayed. In the other hand, if the username and password are correct, the
user is logged to the system and a set of different options available are
displayed.

4 Change History

Date Version Details
05-06-2006 1.0 First version of software requirements specification.
15-06-2006 1.1 The inclusion of project ideas submission system.
28-06-2006 1.2 Changes in supervisor requirements; Listing historical students

and students who chose the supervisor's project idea. Changes
in the unit coordinator requirements; Changing the student's
project choices. Supervisors and students have the same
functions as the clients

90

APPENDIX C

Gantt Chart

91

92

APPENDIX D

Wireframes

93

1. External Contacts
1.1 Homepage

1.2 New External Contact

94

1.3 Your Project Ideas

2. Students
2.1 Homepage

95

2.2 Select Projects

2.3 Project choices

96

3. Supervisors
3.1 My Students

3.2 Submit Preferred Students

97

3.3 Preferred Students

4. Unit Coordinators
4.1 Allocate Projects

98

4.2 My Students

4. Students without Project Choices

99

APPENDIX E

OPAS Presentation

100

101

102

103

104

105

106

107

108

109

110

111

	1Basic details
	2 Outline of the project environment
	3 The problem to be solved
	4 Breakdown of tasks
	5 Project deliverables
	6 Requirements
	7 Legal, ethical, professional, social issues
	8 Facilities and resources
	9 Project plan
	10 Project mode

